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In Section S.1, this appendix contains the omitted proofs of technical lemmas used
in the proofs of the main theorems. In Section S.2, it presents additional simulation
results.

S.1 Omitted Proofs of Lemmas

Proof of Lemma A.1 For expositional simplicity, we present the case of scalar xi. Let g be
an integer satisfying n(2+ϕ)/(2+2ϕ)bn$/2 ≤ g ≤ n(2+ϕ)/(2+2ϕ)bn$. Such a choice always exists
since we assume n(2+ϕ)/(2+2ϕ)bn$ ≥ 1. Consider a fine enough grid over [γ1, γ1 + $] such that
γg = γ1+(g−1)$/g for g = 1, . . . , g+1, wheremax1≤g≤g

(
γg − γg−1

)
≤ $/g. We defineHng(s) =

(nbn)−1
∑

i∈Λn
|xiuiKi (s)1

[
γg < qi ≤ γg+1

]
| for 1 ≤ g ≤ g. Then for any γ ∈

[
γg, γg+1

]
,∣∣Jn (γ; s)− Jn

(
γg; s

)∣∣ ≤√nbn |Hng(s)− E [Hng(s)]|+
√
nbnE [Hng(s)]

and hence

sup
γ∈[γ1,γ1+$]

|Jn (γ; s)− Jn (γ1; s)|

≤ max
2≤g≤g+1

∣∣Jn (γg; s)− Jn (γ1; s)
∣∣+ max

1≤g≤g

√
nbn |Hng(s)− E [Hng(s)]|+ max

1≤g≤g

√
nbnE [Hng(s)]

≡ Ψ1(s) + Ψ2(s) + Ψ3(s).

We let hi(s) = xiuiKi (s)1
[
γg1

< qi ≤ γg2

]
for any given 1 ≤ g1 < g2 ≤ g and for fixed s ∈ S0.

First, for Ψ1(s), we study

E
[∣∣Jn (γg2

; s
)
− Jn

(
γg1

; s
)∣∣4]

=
1

n2b2n

∑
i∈Λn

E
[
h4
i (s)

]
+

1

n2b2n

∑
i,j∈Λn
i 6=j

E
[
h2
i (s)h

2
j (s)

]
+

1

n2b2n

∑
i,j∈Λn
i 6=j

E
[
h3
i (s)hj(s)

]

+
1

n2b2n

∑
i,j,k,l∈Λn
i 6=j 6=k 6=l

E [hi(s)hj(s)hk(s)hl(s)] +
1

n2b2n

∑
i,j,k∈Λn
i 6=j 6=k

E
[
h2
i (s)hj(s)hk(s)

]
≡ Ψ11(s) + Ψ12(s) + Ψ13(s) + Ψ14(s) + Ψ15(s),

where each term’s bound is obtained as follows.
For Ψ11(s): From Lemma B.1 below, we have b−1

n E
[
h4
i (s)

]
≤ C|γg2

− γg1
| for C < ∞.

Therefore,

Ψ11(s) ≤ C

nbn

∣∣γg2
− γg1

∣∣ =
C

nbn
∣∣γg2
− γg1

∣∣ (γg2
− γg1

)2 ≤ C1

(
γg2
− γg1

)2
1



for some C1 <∞ with suffi ciently large n, where the last inequality is because

|γg2
− γg1

| ≤ |g2 − g1| ($/g) = O
(

(n(2+ϕ)/(2+2ϕ)bn)−1
)

(B.1)

by construction and hence nbn|γg2
− γg1

| = O(nϕ/(2+2ϕ)) grows with n.
For Ψ12(s): Note that

1

n2b2n

∑
i,j∈Λn
i 6=j

∣∣Cov [h2
i (s), h

2
j (s)

]∣∣ (B.2)

≤[1]
C2

n2b2n

∑
i,j∈Λn
i 6=j

α1,1(λ(i, j))ϕ/(2+ϕ)E
[∣∣h2

i (s)
∣∣2+ϕ

]2/(2+ϕ)

≤[2]
C2

n2b2n
E
[∣∣h2

i (s)
∣∣2+ϕ

]2/(2+ϕ) ∑
i∈Λn

n−1∑
m=1

∑
j∈Λn

λ(i,j)∈[m,m+1)

α1,1 (m)ϕ/(2+ϕ)

≤[3]
C2

n2b
(2+2ϕ)/(2+ϕ)
n

(
1

bn
E
[∣∣h2

i (s)
∣∣2+ϕ

])2/(2+ϕ) ∑
i∈Λn

∞∑
m=1

mα1,1 (m)ϕ/(2+ϕ)

≤[4]
C ′2

n2b
(2+2ϕ)/(2+ϕ)
n

(
C
∣∣γg2
− γg1

∣∣)2/(2+ϕ)
n

∞∑
m=1

m exp (−mϕ/(2 + ϕ))

≤[5]
C ′′2

nb
(2+2ϕ)/(2+ϕ)
n

∣∣γg2
− γg1

∣∣−(2+2ϕ)/(2+ϕ) (
γg2
− γg1

)2
≤[6] C

′′′
2

(
γg2
− γg1

)2
for some C2, C

′
2, C

′′
2 , C

′′′
2 <∞, where ineq.[1] is by the covariance inequality (A.1) with px = 2+ϕ,

qx = 2 + ϕ, rx = (2 + ϕ)/ϕ, and kx = lx = 1; ineq.[2] follows by dividing the observations
according to λ (i, j); ineq.[3] follows from that α1,1(λ(i, j)) ≤ α1,1(m) for λ(i, j) ∈ [m,m+ 1) and
|{j ∈ Λn : λ(i, j) ∈ [m,m+ 1)}| = O(m) for any given i ∈ Λn as in Lemma A.1.(iii) of Jenish and
Prucha (2009); ineq.[4] is by Lemma B.1; ineq.[5] follows from

∑∞
m=1m exp (−mϕ/(2 + ϕ)) <∞

for ϕ > 0; and ineq.[6] follows from that |g2 − g1|2/(2+ϕ) ≤ (g2 − g1)2 and nb(2+2ϕ)/(2+ϕ)
n |γg2

−
γg1
|(2+2ϕ)/(2+ϕ) = O (1) from (B.1). Furthermore, by Lemma B.1, we have b−1

n E
[
h2
i (s)

]
≤ C|γg2

−
γg1
| and thus Assumptions A-(iii), (v), and (x) yield that

Ψ12(s) ≤ 1

n2b2n

∑
i,j∈Λn
i 6=j

(
E
[
h2
i (s)

]
E
[
h2
j (s)

]
+
∣∣Cov [h2

i (s), h
2
j (s)

]∣∣) (B.3)

≤
(

1

bn
E
[
h2
i (s)

])2

+
1

n2b2n

∑
i,j∈Λn
i 6=j

∣∣Cov [h2
i (s), h

2
j (s)

]∣∣
≤

(
C2 + C ′′′2

) (
γg2
− γg1

)2
from (B.2).

For Ψ13(s): Since E [hi(s)] = 0, using the same argument as (B.2) and (B.3), and the inequality
(A.1) with px = 2 (2 + ϕ) /3, qx = 2 (2 + ϕ), rx = (2 + ϕ)/ϕ, and kx = lx = 1, we can also show
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that

Ψ13(s) ≤ 1

n2b2n

∑
i,j∈Λn
i 6=j

∣∣Cov [h3
i (s), hj(s)

]∣∣
≤ C3

n2b2n

∑
i,j∈Λn
i 6=j

α1,1(λ(i, j))ϕ/(2+ϕ)E
[∣∣h3

i (s)
∣∣2(2+ϕ)/3

]3/(4+2ϕ)
E
[
|hj(s)|2(2+ϕ)

]1/(4+2ϕ)

≤ C ′3

nb
(2+2ϕ)/(2+ϕ)
n

(
1

bn
E
[∣∣h2

i (s)
∣∣(2+ϕ)

])2/(2+ϕ) ∞∑
m=1

m exp (−mϕ/(2 + ϕ))

≤ C ′′3 (nb(2+2ϕ)/(2+ϕ)
n )−1

∣∣γg2
− γg1

∣∣2/(2+ϕ)

≤ C ′′′3

(
γg2
− γg1

)2
for C3, C

′
3, C

′′
3 , C

′′′
3 <∞.

For Ψ14(s): Let E = {(i, j, k, l) : i 6= j 6= k 6= l, 1 < λ(i, j) ≤ λ(i, k) ≤ λ(i, l), and λ(j, k) ≤
λ(j, l)}.11 Then by stationarity,

Ψ14(s) ≤ 4!

n2b2n

∑
i,j,k,l∈Λn∩E

|E [hi(s)hj(s)hk(s)hl(s)]|

=
2 · 4!

n2b2n

∑
i,j,k,l∈Λn∩E

λ(i,j)≥max{λ(j,k),λ(k,l)}

|Cov [hi(s), {hj(s)hk(s)hl(s)}]|

+
4!

n2b2n

∑
i,j,k,l∈Λn∩E

λ(j,k)≥max{λ(i,j),λ(k,l)}

|Cov [{hi(s)hj(s)} , {hk(s)hl(s)}]|

+
4!

n2b2n

∑
i,j,k,l∈Λn∩E

λ(j,k)≥max{λ(i,j),λ(k,l)}

|E [hi(s)hj(s)]E [hk(s)hl(s)]|

≡ Ψ14,1(s) + Ψ14,2(s) + Ψ14,3(s).

In Ψ14,1(s), note that the largest distance among all the pairs is λ (i, j). Then, similarly, by the
covariance inequality (A.1) with px = 2 (2 + ϕ) /3, qx = 2 (2 + ϕ), rx = (2 + ϕ)/ϕ, kx = 1, and
lx = 3,

Ψ14,1(s)

≤ C4

n2b
(2+2ϕ)/(2+ϕ)
n

∑
i,j,k,l∈Λn∩E

λ(i,j)≥max{λ(j,k),λ(k,l)}

α1,3(λ(i, j))ϕ/(2+ϕ)

(
1

bn
E
[
|hi(s)|4+2ϕ

])1/(4+2ϕ)

×
(

1

bn
E
[
|hj(s)hk(s)hl(s)|2(2+ϕ)/3

])3/(4+2ϕ)

≤ C ′4

n2b
(2+2ϕ)/(2+ϕ)
n

∑
i,j,k,l∈Λn∩E

λ(i,j)≥max{λ(j,k),λ(k,l)}

α1,3(λ(i, j))ϕ/(2+ϕ)
∣∣γg2
− γg1

∣∣2/(2+ϕ)

11 In the (one-dimensional) time series case, this set of indices reduces to {(i, j, k, l) : 1 ≤ i < j < k < l ≤ n}.
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≤ C ′4

n2b
(2+2ϕ)/(2+ϕ)
n

∑
i∈Λn

n−1∑
m=1

∑
j∈Λn

λ(i,j)∈[m,m+1)

∑
k∈Λn

λ(j,k)≤m

∑
l∈Λn

λ(k,l)≤m

α1,3(m)ϕ/(2+ϕ)
∣∣γg2
− γg1

∣∣2/(2+ϕ)

≤ C ′′4

nb
(2+2ϕ)/(2+ϕ)
n

∞∑
m=1

m5 exp (−mϕ/(2 + ϕ))
∣∣γg2
− γg1

∣∣2/(2+ϕ)

≤ C ′′′4

(
γg2
− γg1

)2
as in (B.2) for C4, C

′
4, C

′′
4 , C

′′′
4 <∞ since |{k ∈ Λn : λ (j, k) ≤ m}| = O(m2) for any given j ∈ Λn.

Note that the second inequality above is from

E[|hj(s)hk(s)hl(s)|2(2+ϕ)/3] ≤
(
E[|hj(s)hk(s)|2(2+ϕ)/2]

)2/3 (
E[|hl(s)|2(2+ϕ)]

)1/3

≤
(
E[|hj(s)|2(2+ϕ)]E[|hk(s)|2(2+ϕ)]

)1/3 (
E[|hl(s)|2(2+ϕ)]

)1/3

= E[|hj(s)|2(2+ϕ)]

by the Hölder’s inequality and stationarity. In Ψ14,2(s), the largest distance among all the pairs
is λ (j, k). Similarly as above, therefore,

Ψ14,2(s)

≤ C5

n2b
(2+2ϕ)/(2+ϕ)
n

∑
i,j,k,l∈Λn∩E

λ(j,k)≥max{λ(i,j),λ(k,l)}

α2,2(λ(j, k))ϕ/(2+ϕ)

(
1

bn
E
[
|hi(s)hj(s)|2+ϕ

])1/(2+ϕ)

×
(

1

bn
E
[
|hk(s)hl(s)|2+ϕ

])1/(2+ϕ)

≤ C ′5

n2b
(2+2ϕ)/(2+ϕ)
n

∑
i,j,k,l∈Λn∩E

λ(j,k)≥max{λ(i,j),λ(k,l)}

α2,2(λ(j, k))ϕ/(2+ϕ)
∣∣γg2
− γg1

∣∣2/(2+ϕ)

≤ C ′′5

nb
(2+2ϕ)/(2+ϕ)
n

∞∑
m=1

m5 exp (−mϕ/(2 + ϕ))
∣∣γg2
− γg1

∣∣2/(2+ϕ)

≤ C ′′′5

(
γg2
− γg1

)2
for C5, C

′
5, C

′′
5 , C

′′′
5 < ∞. In Ψ14,3(s), the largest distance among all the pairs is still λ (j, k). We

define an increasing sequence of integers κn such that κ2
n = O(n(2+ϕ)/(2+2ϕ)). We decompose

Ψ14,3(s) into

Ψ14,3(s) =
4!

n2b2n

∑
i,j,k,l∈Λn∩E

λ(j,k)≥max{λ(i,j),λ(k,l)}
λ(i,j)≤κn,λ(k,l)≤κn

|E [hi(s)hj(s)]E [hk(s)hl(s)]|

+
4!

n2b2n

∑
i,j,k,l∈Λn∩E

λ(j,k)≥max{λ(i,j),λ(k,l)}
λ(i,j)>κn,λ(k,l)>κn

|E [hi(s)hj(s)]E [hk(s)hl(s)]|

4



+
2 · 4!

n2b2n

∑
i,j,k,l∈Λn∩E

λ(j,k)≥max{λ(i,j),λ(k,l)}
λ(i,j)≤κn,λ(k,l)>κn

|E [hi(s)hj(s)]E [hk(s)hl(s)]|

≡ Ψ
[1]
14,3(s) + Ψ

[2]
14,3(s) + Ψ

[3]
14,3(s).

For Ψ
[1]
14,3(s), since E [|xiuixjuj ||qi, qj , si, sj ] < C6 < ∞ from Assumption A-(vii), we can show

that

1

b2n
E [hi(s)hj(s)] ≤ C6

∫∫ ∫ γk

γg

∫ γk

γg

K (t)K
(
t′
)
f
(
q, q′, s+ tbn, s+ t′bn

)
dqdq′dtdt′ (B.4)

≤ C ′6
(
γg2
− γg1

)2
for some constant C ′6 < ∞ when n is suffi ciently large, using a similar argument in the proof of
Lemma B.1. Hence, from the fact that |{j ∈ Λn : λ (i, j) ≤ κn}| = O(κ2

n) for any fixed i ∈ Λn, we
obtain

Ψ
[1]
14,3(s) ≤ C ′′6

n2b2n

∑
i,j∈Λn

λ(i,j)≤κn

|E [hi(s)hj(s)]|
∑
k,l∈Λn

λ(k,l)≤κn

|E [hk(s)hl(s)]|

≤ C ′′′6 κ
4
nb

2
n

(
γg2
− γg1

)4
≤ C∗6

(
γg2
− γg1

)2
for some C ′′6 , C

′′′
6 , C

∗
6 < ∞, because κ4

nb
2
n(γg2

− γg1
)2 = O((κ2

nn
−(2+ϕ)/(2+2ϕ))2) = O(1) from the

construction of κn. For Ψ
[2]
14,3(s), since E [hi(s)hj(s)] = Cov [hi(s), hj(s)], the covariance inequality

(A.1) and Lemma B.1 yield that

Ψ
[2]
14,3(s) ≤ C7

n2b2n

∑
i,j∈Λn

λ(i,j)>κn

|E [hi(s)hj(s)]|
∑
k,l∈Λn

λ(k,l)>κn

|E [hk(s)hl(s)]|

≤ C ′7
n2b2n


∑
i,j∈Λn

λ(i,j)>κn

α1,1 (λ (i, j))ϕ/(2+ϕ) E
[
|hi(s)|2+ϕ

]1/(2+ϕ)
E
[
|hj(s)|2+ϕ

]1/(2+ϕ)


2

=
C ′7

b
2ϕ/(2+ϕ)
n


(

1

bn
E
[
|hi(s)|2+ϕ

])2/(2+ϕ) 1

n

∑
i,j∈Λn

λ(i,j)>κn

α1,1 (λ (i, j))ϕ/(2+ϕ)


2

≤ C ′′7

b
2ϕ/(2+ϕ)
n

∣∣γg2
− γg1

∣∣4/(2+ϕ)


1

n

∑
i∈Λn

n−1∑
m=κn+1

∑
j∈Λn

λ(i,j)∈[m,m+1)

α1,1 (m)ϕ/(2+ϕ)


2

≤ C ′′′7

b
2ϕ/(2+ϕ)
n

∣∣γg2
− γg1

∣∣4/(2+ϕ)

{ ∞∑
m=κn+1

m exp (−mϕ/(2 + ϕ))

}2
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for C7, C
′
7, C

′′
7 , C

′′′
7 <∞. Note that for any a > 0, we have

∞∑
m=κn+1

m exp (−am) ≤
∫ ∞
κn

t exp (−at) dt =
1

a

(
κn +

1

a

)
exp (−aκn) .

It follows that

Ψ
[2]
14,3(s) ≤ C∗7

(
γg2
− γg1

)2( κ2
n exp (−2κnϕ/(2 + ϕ))

b
2ϕ/(2+ϕ)
n

∣∣γk − γg∣∣2ϕ/(2+ϕ)

)

≤ C∗∗7
(
γg2
− γg1

)2
exp

(
− 2ϕ

2 + ϕ
κn

)(
κ2
n

n(2+ϕ)/(2+2ϕ)

)
n(2−ϕ)/(2+2ϕ)

≤ C∗∗∗7

(
γg2
− γg1

)2
for C∗7 , C

∗∗
7 , C∗∗∗7 < ∞, because b2ϕ/(2+ϕ)

n |γg2
− γg1

|2ϕ/(2+ϕ) = O(n2ϕ/(2+2ϕ)) and the exponential

term decays faster than the (potentially) growing polynomial term. For Ψ
[3]
14,3(s), by combining

the arguments for bounding Ψ
[1]
14,3(s) and Ψ

[2]
14,3(s), we also obtain that

Ψ
[3]
14,3(s) ≤ C8

(
κ2
nbn

(
γg2
− γg1

)2)(∣∣γg2
− γg1

∣∣2/(2+ϕ) κn exp(−κnϕ/(2 + ϕ))

b
ϕ/(2+ϕ)
n

)
≤ C ′8

(
γg2
− γg1

)2
for some C8, C

′
8 <∞.

For Ψ15(s): Let E ′ = {(i, j, k) : i 6= j 6= k and 1 < λ(i, j) ≤ λ(i, k)} and decompose it into

Ψ15(s) =
2

n2b2n

∑
i,j,k∈Λn∩E ′
λ(i,j)<λ(j,k)

E
[
h2
i (s)hj(s)hk(s)

]
+

2

n2b2n

∑
i,j,k∈Λn∩E ′
λ(i,j)≥λ(j,k)

E
[
h2
i (s)hj(s)hk(s)

]

≤ 2

n2b2n

∑
i,j,k∈Λn∩E ′
λ(i,j)<λ(j,k)

∣∣Cov [{h2
i (s)hj(s)}, hk(s)

]∣∣
+

2

n2b2n

∑
i,j,k∈Λn∩E ′
λ(i,j)≥λ(j,k)

∣∣Cov [h2
i (s), {hj(s)hk(s)}

]∣∣
+

2

n2b2n

∑
i,j,k∈Λn∩E ′
λ(i,j)≥λ(j,k)

∣∣E [h2
i (s)

]
E [hj(s)hk(s)]

∣∣
≡ Ψ15,1(s) + Ψ15,2(s) + Ψ15,3(s).

Similarly as Ψ14,1(s),

Ψ15,1(s)

≤ C9

n2b2n

∑
i,j,k∈Λn∩E ′
λ(i,j)<λ(j,k)

α2,1 (λ(j, k)})ϕ/(2+ϕ) E
[∣∣h2

i (s)hj(s)
∣∣2(2+ϕ)/3

]3/(4+2ϕ)
E
[
|hk(s)|2(2+ϕ)

]1/(4+2ϕ)

6



≤ C ′9

n2b
(2+2ϕ)/(2+ϕ)
n

∑
j∈Λn

n−1∑
m=1

∑
k∈Λn

λ(j,k)∈[m,m+1)

∑
i∈Λn

λ(i,j)≤m

α2,1 (m)ϕ/(2+ϕ)
∣∣γg2
− γg1

∣∣2/(2+ϕ)

≤ C ′′9

nb
(2+2ϕ)/(2+ϕ)
n

∣∣γg2
− γg1

∣∣2/(2+ϕ)
∞∑
m=1

m3 exp (−mϕ/(2 + ϕ))

≤ C ′′′9

(
γg2
− γg1

)2 ,
for C9, C

′
9, C

′′
9 , C

′′′
9 < ∞ and the same argument implies that Ψ15,2(s) = O((γg2

− γg1
)2) as well.

For Ψ15,3(s), similarly as Ψ14,3(s), we have

Ψ15,3(s) =
2

n2b2n

∑
i,j,k∈Λn∩E ′

λ(i,j)≥λ(j,k),λ(j,k)≤κn

∣∣E [h2
i (s)

]
E [hj(s)hk(s)]

∣∣
+

2

n2b2n

∑
i,j,k∈Λn∩E ′

λ(i,j)≥λ(j,k),λ(j,k)>κn

∣∣E [h2
i (s)

]
E [hj(s)hk(s)]

∣∣

≤ C10

nbn

∑
i∈Λn

∣∣E [h2
i (s)

]∣∣


1

nbn

∑
j,k∈Λn

λ(j,k)≤κn

|E [hj(s)hk(s)]|+
1

nbn

∑
j,k∈Λn

λ(j,k)>κn

|E [hj(s)hk(s)]|


≤ C ′10

∣∣γg2
− γg1

∣∣{κ2
nbn

(
γg2
− γg1

)2
+
∣∣γg2
− γg1

∣∣2/(2+ϕ) κn exp (−κn(ϕ/(2 + ϕ)))

b
ϕ/(2+ϕ)
n

}

≤ C ′′10

(
γg2
− γg1

)2{
κ2
nbn

∣∣γg2
− γg1

∣∣+
κn exp (−κn(ϕ/(2 + ϕ)))

b
ϕ/(2+ϕ)
n

∣∣γg2
− γg1

∣∣ϕ/(2+ϕ)

}
≤ C ′′′10

(
γg2
− γg1

)2
for C10, C

′
10, C

′′
10, C

′′′
10 <∞.

By combining all the results from Ψ11(s) to Ψ15(s), we thus have

E
[∣∣Jn (γg2

; s
)
− Jn

(
γg1

; s
)∣∣4] ≤ C (γg2

− γg1

)2 ≤ C (|g2 − g1| ($/g))2

for C < ∞, and hence Theorem 12.2 of Billingsley (1968) yields that there exists C
′
< ∞ such

that

P (Ψ1(s) > η) = P
(

max
2≤g≤g+1

∣∣Jn (γg; s)− Jn (γ1; s)
∣∣ > η

)
≤ C

′
$2

η4
(B.5)

for η > 0 as in the proof of Lemma A.3 in Hansen (2000).
Next, for Ψ2(s), for all g = 1, . . . , ḡ and C

′′
<∞, Lemma B.2 below shows that

E
[(√

nbn |Hng(s)− E [Hng(s)]|
)4
]
≤ C ′′($/g)2.

Hence, by Markov inequality,

P
(

max
1≤g≤g

√
nbn |Hng(s)− E [Hng(s)]| > η

)
≤ gC

′′
$2/g2

η4
≤ C

′′
$2

η4
, (B.6)

7



where the last inequality uses ($/g) ≤ $.
Finally, for Ψ3(s), Lemma B.1 gives√

nbnE [Hng(s)] =
√
nbn × b−1

n E
[∣∣xiui1 [γg < qi ≤ γg+1

]
Ki (s)

∣∣] (B.7)

≤
√
nbnC

∣∣γg+1 − γg
∣∣ ≤ C∗∗

√
nbn

n(2+ϕ)/(2+2ϕ)bn
=

C∗∗√
n1/(1+ϕ)bn

≤ η

if there exists a constant C∗∗ such that η ≥ C∗∗(n1/(1+ϕ)bn)−1/2. So the proof is complete by
combining (B.5), (B.6), and (B.7), where C∗ = C

′
+ C

′′
. �

The following two lemmas are used in proving Lemma A.1 above.

Lemma B.1 b−1
n E

[
|hi(s)|`

]
≤ C

∣∣γg2
− γg1

∣∣ for ` ≤ 2(2 + ϕ) and C <∞.

Proof of Lemma B.1 We have E
[
|xiui|`|qi, si

]
< C1 <∞ from Assumption A-(v). Hence, by

Assumptions A-(vii) and (x), Taylor expansion yields

1

bn
E
[
|hi(s)|`

]
=

1

bn

∫∫
E
[
|xiui|`|q, v

]
1
[
γg1

< q ≤ γg2

]
K`

(
v − s
bn

)
f (q, v) dqdv

≤ C1

∫∫
1
[
γg1

< q ≤ γg2

]
K` (t) f (q, s+ bnt) dqdt

= C1

∫
K` (t)

∫
1
[
γg1

< q ≤ γg2

] {
f (q, s) +O(bnt+ b2nt

2)
}
dqdt

≤ C ′1
∣∣γg2
− γg1

∣∣
for some constants C1, C

′
1 <∞ when n is suffi ciently large, where we apply the change of variables

t = (v − s)/bn. Note that
∫
K` (t) dt <∞ and

∫
1
[
γg1

< q ≤ γg2

]
f (q, s) dq = fs(s)P(γg1

< qi ≤
γg2
|si = s) = O(|γg2

−γg1
|) by the mean-value theorem, where fs (s) <∞ is the marginal density

of si and |γg2
− γg1

| ≤ |g2 − g1|$/g = O(n(2+ϕ)/(2+2ϕ)bn)−1 = o(1) because n(2+ϕ)/(2+2ϕ)bn >

n1/(1+ϕ)bn →∞ as n→∞ from Assumption A-(ix). �

Lemma B.2 E[(
√
nbn |Hng(s)− E[Hng(s)]|)4] ≤ C($/g)2 for all g = 1, . . . , ḡ and C <∞.

Proof of Lemma B.2 RecallHng(s) = (nbn)−1
∑

i∈Λn
|hig(s)|, where hig(s) = xiuiKi (s)1[γg <

qi ≤ γg+1]. We decompose

E
[(√

nbn |Hng(s)− E [Hng(s)]|
)4
]

(B.8)

=
1

n2b2n
E

(∑
i∈Λn

(|hig (s)| − E [|hig(s)|])
)4


=
1

n2b2n

∑
i∈Λn

E
[
ηi(s)

4
]

+
1

n2b2n

∑
i,j∈Λn
i 6=j

E
[
η2
i (s)η

2
j (s)

]
+

1

n2b2n

∑
i,j∈Λn
i 6=j

E
[
η3
i (s) ηj (s)

]

+
1

n2b2n

∑
i,j,k,l∈Λn
i 6=j 6=k 6=l

E
[
ηi(s)ηj (s) ηk (s) ηl (s)

]
+

1

n2b2n

∑
i,j,k∈Λn
i 6=j 6=k

E
[
η2
i (s) ηj (s) ηk (s)

]
,

8



where we define ηi(s) = |hig (s)|−E [|hig(s)|]. However, E[ηi(s)] = 0 by construction, E[|ηi(s)|r] ≤
E[|hig(s)|r] for any r ≥ 1, and E[

∣∣ηi(s)ηj(s)∣∣] ≤ E[|hig (s)hjg (s)|]. It follows that, using the same
arguments respectively in Lemma B.1, (B.2), and (B.4), we obtain

1

bn
E
[
|ηi(s)|`

]
≤ 1

bn
E
[
|hig(s)|`

]
≤ C1

∣∣γg+1 − γg
∣∣ ,

1

n2b2n

∑
i,j∈Λn
i, 6=j

∣∣Cov [η2
i (s), η

2
j (s)

]∣∣ ≤ C2

(
γg+1 − γg

)2
1

b2n
E
[∣∣ηi(s)ηj(s)∣∣] ≤ 1

b2n
E [|hig (s)hjg (s)|] ≤ C3

(
γg+1 − γg

)2
for suffi ciently large n and for some C1, C2, C3 < ∞. Therefore, we can find the bounds of the
five terms in (B.8) as we obtain for Ψ1k(s) in the proof of Lemma A.1 by replacing (g1, g2) by
(g, g + 1) for k = 1, . . . , 5, from the facts that |γg+1 − γg| = $/ḡ. Note that a similar moment
inequality for spatial α-mixing processes can be also found in Gao, Lu, and Tjøstheim (2008). �

Proof of Lemma A.2 For a fixed γ, the Theorem of Bolthausen (1982) implies that Jn (γ; s)→d

J (γ; s) as n→∞ under Assumption A-(iii). Because γ is in the indicator function, such pointwise
convergence in γ can be generalized into any finite collection of γ to yield the finite dimensional
convergence in distribution. Then the weak convergence follows from Lemma A.1 above and
Theorem 15.5 of Billingsley (1968). �

Proof of Lemma A.3 We prove the convergence ofMn (γ; s). For Jn (γ; s), since E [uixi|qi, si] =

0, the proof is identical as Mn (γ; s) and hence omitted. For expositional simplicity, we present
the case of scalar xi.

By stationarity, Assumptions A-(vii), (x), and Taylor expansion, we have

E [Mn (γ; s)] =
1

bn

∫∫
E[x2

i |q, v]1[q ≤ γ]K

(
v − s
bn

)
f (q, v) dqdv (B.9)

=

∫∫
D(q, s+ bnt)1[q ≤ γ]K (t) f (q, s+ bnt) dqdt

= M (γ; s) + b2n

∫
M̃ (q; s)1[q ≤ γ]dq

∫
t2K (t) dt,

where M̃ (q; s) = Ḋ(q, s)ḟ (q, s) + (D̈(q, s) + f̈ (q, s))/2. We let Ḋ and ḟ denote the partial
derivatives, and D̈ and f̈ denote the second-order partial derivatives with respect to s. Since
sups∈S0

||M̃ (q; s) || < ∞ for any q from Assumption A-(vii), and K (·) is a second-order kernel,
we have

sup
(γ,s)∈Γ×S0

‖E [Mn (γ; s)]−M (γ; s)‖ = Op
(
b2n
)

= op(1). (B.10)

Next, we let τn = (n log n)1/(4+2ϕ) and ϕ > 0 be given in Assumption A-(v). By Markov’s and
Hölder’s inequalities, Assumption A-(v) gives P

(
x2
n > τn

)
≤ Cτ−(4+2ϕ)

n E[|x2
n|2(2+ϕ)] ≤ C ′ (n log n)−1

for some C,C ′ <∞. Thus∑
n∈Z2

P
(
x2
n > τn

)
≤ C ′

∑
n∈Z2

(n log n)−1 <∞,

9



which yields that x2
n ≤ τn almost surely for suffi ciently large n by the Borel-Cantelli lemma. Since

τn →∞ as n→∞, we have x2
i ≤ τn for any i ∈ Λn and hence

sup
(γ,s)∈Γ×S0

‖Mn(γ; s)−M τ
n(γ; s)‖ = 0 and sup

(γ,s)∈Γ×S0

‖E [Mn(γ; s)]− E [M τ
n(γ; s)]‖ = 0

almost surely for suffi ciently large n, where

M τ
n(γ; s) =

1

nbn

∑
i∈Λn

x2
i1i(γ)Ki(s)1

{
x2
i ≤ τn

}
. (B.11)

It follows that

sup
(γ,s)∈Γ×S0

‖Mn(γ; s)− E [Mn(γ; s)]‖ ≤ sup
(γ,s)∈Γ×S0

‖Mn(γ; s)−M τ
n(γ; s)‖ (B.12)

+ sup
(γ,s)∈Γ×S0

‖M τ
n(γ; s)− E [M τ

n(γ; s)]‖

+ sup
(γ,s)∈Γ×S0

‖E [Mn(γ; s)]− E [M τ
n(γ; s)]‖

and we establish sup(γ,s)∈Γ×S0
‖Mn(γ; s)− E [Mn(γ; s)]‖ = op(1) if the second term in (B.12) is

op(1). Then we conclude sup(γ,s)∈Γ×S0
‖Mn (γ; s)−M (γ; s)‖ →p 0 as desired by combining (B.10)

and (B.12).
To this end, we let mn be an integer such that mn = O(τn(n/(b3n log n))1/2) and we cover

the compact Γ × S0 by m2
n squares centered at

(
γk1

, sk2

)
, defined as Ik = {(γ′, s′) : |γ′ −

γk1
| ≤ C/mn and |s′ − sk2 | ≤ C/mn} for some C < ∞. Note that τn(n/(b3n log n))1/2 =

τn
(
n1−2εbn/ log n

)1/2 (
n2ε/b4n

)1/2 → ∞ as n → ∞ from Assumption A-(xi), hence mn → ∞.
We then have

sup
(γ,s)∈Γ×S0

‖M τ
n(γ; s)− E [M τ

n(γ; s)]‖ ≤ max
1≤k1≤mn
1≤k2≤mn

sup
(γ,s)∈Ik

‖M τ
n(γ; s)− E [M τ

n(γ; s)]‖

≤ max
1≤k1≤mn
1≤k2≤mn

sup
(γ,s)∈Ik

∥∥M τ
n(γ; s)−M τ

n(γk1
; sk2)

∥∥
+ max

1≤k1≤mn
1≤k2≤mn

sup
(γ,s)∈Ik

∥∥E [M τ
n(γ; s)]− E

[
M τ
n(γk1

; sk2)
]∥∥

+ max
1≤k1≤mn
1≤k2≤mn

∥∥M τ
n(γk1

; sk2)− E
[
M τ
n(γk1

; sk2)
]∥∥

≡ ΨM1 + ΨM2 + ΨM3.

We first decompose M τ
n(γ; s)−M τ

n(γk1
; sk2) ≤M τ

1n(γ, γk1
; sk2) +M τ

2n(γ; s, sk2), where

M τ
1n(γ, γk1

; sk2) =
1

nbn

∑
i∈Λn

x2
i

∣∣1 [qi ≤ γ]− 1
[
qi ≤ γk1

]∣∣Ki(sk2)1
[
x2
i ≤ τn

]
,

M τ
2n(γ; s, sk2) =

1

nbn

∑
i∈Λn

x2
i1 [qi ≤ γ] |Ki(s)−Ki(sk2)|1

[
x2
i ≤ τn

]
.

Since Ki(·) is bounded from Assumption A-(x) and we only consider x2
i ≤ τn, for any γ such that

10



|γ − γk1
| ≤ C/mn,∥∥M τ

1n(γ, γk1
; sk2)

∥∥ ≤ C1
τn
nbn

∑
i∈Λn

1
[
min{γk1

, γ} < qi ≤ max{γk1
, γ}
]

(B.13)

≤ C1τnb
−1
n P

(
min{γk1

, γ} < qi ≤ max{γk1
, γ}
)

(1 + oa.s.(1))

≤ C ′1τnb
−1
n m−1

n (1 + oa.s.(1))

= C ′′1

(
bn log n

n

)1/2

(1 + oa.s.(1))

= Oa.s.

((
log n

nbn

)1/2
)

for some C1, C
′
1, C

′′
1 < ∞, where the second equality is by the uniform almost sure law of large

numbers for random fields (e.g., Jenish and Prucha (2009), Theorem 2). This bound holds uni-
formly in (γ, s) ∈ Ik and k1, k2 ∈ {1, . . . ,mn}. Similarly, since K(·) is Lipschitz from Assumption
A-(x),

‖M τ
2n(γ; s, sk2)‖ ≤ τn

nbn

∑
i∈Λn

|Ki(s)−Ki(sk2)| (B.14)

≤ C2
τn
b2n
|s− sk2 | ≤

C ′2τn
b2nmn

= Oa.s.

((
log n

nbn

)1/2
)

for some C2, C
′
2 <∞, uniformly in γ, s, k1 and k2. It follows that∥∥M τ

n(γ; s)−M τ
n(γk1

; sk2)
∥∥ = Oa.s.((log n/(nbn))1/2)

uniformly in γ, s, k1 and k2, and hence we can readily verify that both ΨM1 and ΨM2 are
Oa.s.((log n/(nbn))1/2). For ΨM3, we follow the same argument for bounding the Q∗3n term
on pp.794-796 of Carbon, Francq, and Tran (2007). In particular, for any k1 ∈ {1, . . . ,mn},
max1≤k2≤mn ||M τ

n(γk1
; sk2) − E

[
M τ
n(γk1

; sk2)
]
|| ≤ C3 (log n/(nbn))1/2 a.s. for some C3 < ∞.

Note that γk1
shows up in the indicator function 1

[
qi ≤ γk1

]
only, which is uniformly bounded

by 1. The bound is hence uniform over all k1 ∈ {1, . . . ,mn} and ΨM3 = Oa.s.((log n/(nbn))1/2)

as well. We have sup(γ,s)∈Γ×S0
‖M τ

n(γ; s)− E [M τ
n(γ; s)]‖ = oa.s.(1) by combining the bounds for

ΨM1,ΨM2, and ΨM3. We thus complete the proof because log n/(nbn) → 0 from Assumption
A-(ix). �

Proof of Lemma A.4 For expositional simplicity, we present the case of scalar xi. Similarly
as (B.9), we have

E [∆Mn (s)] (B.15)

=

∫∫
D(q, s+ bnt) {1 [q < γ0 (s+ bnt)]− 1 [q < γ0 (s)]}K(t)dqdt

=

∫
T +(s)

∫ γ0(s+bnt)

γ0(s)
D(q, s+ bnt)K(t)dqdt+

∫
T −(s)

∫ γ0(s)

γ0(s+bnt)
D(q, s+ bnt)K(t)dqdt

≡ Ψ+
M (s) + Ψ−M (s),

11



where D(q, s+ bnt) = D(q, s+ bnt)f(q, s+ bnt) and we define T +(s) = {t : γ0(s) ≤ γ0 (s+ bnt)}
and T −(s) = {t : γ0(s) > γ0 (s+ bnt)}. We consider three cases of γ̇0(s) = ∂γ0 (s) /∂s > 0,
γ̇0(s) < 0, and γ̇0(s) = 0 separately, which are well-defined from Assumption A-(vi).

First, we suppose γ̇0(s) > 0. We choose a positive sequence tn → ∞ such that tnbn → 0

as n → ∞. It follows that for any fixed ε > 0, tnbn ≤ ε if n is suffi ciently large and hence
T +(s) ∩ {t : |t| ≤ tn} = [0, tn] since γ̇0 (·) is continuous. Furthermore, the mean value theorem
gives ∫ γ0(s+bnt)

γ0(s)
D(q, s+ bnt)dq = bntD(γ0 (s) , s)γ̇0 (s) +O

(
b2n
)
t2, (B.16)

where |D(γ0 (s) , s)γ̇0 (s) | <∞ from Assumptions A-(vi) and (vii). Therefore,

Ψ+
M (s) (B.17)

=

∫ tn

0

∫ γ0(s+bnt)

γ0(s)
D(q, s+ bnt)K(t)dqdt+

∫
T +(s)∩{t:|t|>tn}

∫ γ0(s+bnt)

γ0(s)
D(q, s+ bnt)K(t)dqdt

=

{
bnD(γ0 (s) , s)γ̇0 (s)

∫ tn

0
tK(t)dt+O(b2n)

}
+O

(
bn

∫ ∞
tn

tK(t)dt

)
= bnD(γ0 (s) , s)γ̇0 (s)

∫ ∞
0

tK(t)dt+ o (bn) ,

where the second equality is because T +(s) ∩ {t : |t| > tn} ⊂ (tn,∞) and∣∣∣∣∣
∫
T +(s)∩{t:|t|>tn}

∫ γ0(s+bnt)

γ0(s)
D(q, s+ bnt)K(t)dqdt

∣∣∣∣∣ ≤ bn |D(γ0 (s) , s)γ̇0 (s)|
∫ ∞
tn

tK(t)dt+O(b2n)

from (B.16) as T +(s) ∩ {t : |t| > tn} ⊂ (tn,∞). As tn → ∞, note that
∫ tn

0 tK(t)dt → 1/2 and
Assumption A-(x) implies K (t) t−(2+η) → 0 for some η > 0 as t→∞ and hence

∫∞
tn
tK(t)dt→ 0.

Similarly, T −(s) ∩ {t : |t| ≤ tn} = [−tn, 0] and thus

Ψ−M (s) =

∫ 0

−tn

∫ γ0(s)

γ0(s+bnt)
D(q, s+ bnt)K(t)dqdt+ o (bn)

= −bnD(γ0 (s) , s)γ̇0 (s)

∫ 0

−∞
tK(t)dt+ o (bn) ,

which yields E [∆Mn (s)] = Ψ+
M (s) + Ψ−M (s) = bnD(γ0 (s) , s)γ̇0 (s) + o (bn) because

∫∞
0 tK(t)dt−∫ 0

−∞ tK(t)dt = 1. When γ̇0(s) < 0, we have T +(s)∩{t : |t| ≤ tn} = [−tn, 0] and T −(s)∩{t : |t| ≤
tn} = [0, tn]. Therefore, we can symmetrically show that E [∆Mn (s)] = −bnD(γ0 (s) , s)γ̇0 (s) +

o (bn).
Second, we suppose γ̇0(s) = 0 and s is the local minimizer. Then, T +(s)∩ {t : |t| ≤ tn} = {t :

|t| ≤ tn} and hence

Ψ+
M (s) (B.18)

=

∫ tn

−tn

∫ γ0(s+bnt)

γ0(s)
D(q, s+ bnt)K(t)dqdt+

∫
T +(s)∩{t:|t|>tn}

∫ γ0(s+bnt)

γ0(s)
D(q, s+ bnt)K(t)dqdt

= O
(
b2n
) ∫ tn

−tn
t2K(t)dt+ o(b2n)
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= O
(
b2n
)

from (B.16), where
∫ tn
−tn t

2K(t)dt →
∫∞
−∞ t

2K(t)dt < ∞ as tn → ∞ from Assumptions A-(x).
Note that the second equality is because∫

T +(s)∩{t:|t|>tn}

∫ γ0(s+bnt)

γ0(s)
D(q, s+ bnt)K(t)dqdt = O

(
b2n

∫
|t|>tn

t2K(t)dt

)
= o

(
b2n
)
,

where T +(s) ∩ {t : |t| > tn} ⊂ {t : |t| > tn} and
∫
|t|>tn t

2K(t)dt → 0 as tn → ∞. However,
T −(s) ∩ {t : |t| ≤ tn} becomes empty and hence

Ψ−M (s) = 0 +

∫
T −(s)∩{t:|t|>tn}

∫ γ0(s)

γ0(s+bnt)
D(q, s+ bnt)K(t)dqdt = o(b2n).

When γ̇0(s) = 0 and s is the local maximizer, we can symmetrically show that

Ψ+
M (s) = 0 +

∫
T +(s)∩{t:|t|>tn}

∫ γ0(s+bnt)

γ0(s)
D(q, s+ bnt)K(t)dqdt = o(b2n)

and

Ψ−M (s) =

∫ tn

−tn

∫ γ0(s)

γ0(s+bnt)
D(q, s+ bnt)K(t)dqdt+ o(b2n) = O(b2n).

By combining these results, we have E [∆Mn (s)] = bnD(γ0 (s) , s)|γ̇0 (s) | + o (bn) for a given
s ∈ S0, and hence

sup
s∈S0

E [∆Mn (s)] = O(bn)

since sups∈S0
D(γ0 (s) , s)|γ̇0 (s) | <∞ from Assumptions A-(vi) and (vii).

The desired result then follows if sups∈S0
||∆Mn (s) − E [∆Mn (s)] || = o(bn) almost surely,

which can be shown as Theorem 2.2 in Carbon, Francq, and Tran (2007) (see also Section 3 in
Tran (1990) and Section 5 in Carbon, Tran, and Wu (1997)). Similarly as the proof of (B.12) in
Lemma A.3, we let τn = (n log n)1/(4+2ϕ) and define

∆M τ
n(s) =

1

nbn

∑
i∈Λn

x2
i∆i(si, s)Ki(s)1τn

as in (B.11), where ∆i(si, s) = 1i (γ0 (si))−1i (γ0 (s)) and 1τn = 1
{
x2
i ≤ τn

}
. We also let mn be

an integer such that mn = O(τnn
1−2ε/b2n), which diverges as n → ∞, and we cover the compact

S0 by mn intervals centered at sk, which are defined as Ik = {s′ : |s′ − sk| ≤ C/mn} for some
C <∞. Then,

sup
s∈S0

‖∆M τ
n(s)− E [M∆τ

n(s)]‖ ≤ max
1≤k≤mn

sup
s∈Ik
‖∆M τ

n(s)−∆M τ
n(sk)‖

+ max
1≤k≤mn

sup
s∈Ik
‖E [∆M τ

n(s)]− E [∆M τ
n(sk)]‖

+ max
1≤k≤mn

‖∆M τ
n(sk)− E [∆M τ

n(sk)]‖

≡ Ψ∆M1 + Ψ∆M2 + Ψ∆M3.
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However,

‖∆M τ
n(s)−∆M τ

n(sk)‖ ≤
1

nbn

∑
i∈Λn

x2
i |∆i(si, s)−∆i(si, sk)|Ki(sk)1τn

+
1

nbn

∑
i∈Λn

x2
i |∆i(si, s)| |Ki(s)−Ki(sk)|1τn

=
1

nbn

∑
i∈Λn

x2
i |1i (γ0 (sk))− 1i (γ0 (s))|Ki(sk)1τn

+
1

nbn

∑
i∈Λn

x2
i |1i (γ0 (si))− 1i (γ0 (s))| |Ki(s)−Ki(sk)|1τn

= Oa.s.

(
τn
b2nmn

)
= Oa.s.

(
1

n1−2ε

)
as in (B.13) and (B.14), and hence Ψ∆M1 = Ψ∆M2 = oa.s.(bn) as n1−2εbn → ∞. We also have
Ψ∆M3 = oa.s.(bn) as proved below,12 which completes the proof. �

Proof of Ψ∆M3 = oa.s.(bn): We let

Zτi (s) = (nbn)−1
{

(c>0 xi)
2∆i(si, s)Ki (s)1τn − E[(c>0 xi)

2∆i(si, s)Ki (s)1τn ]
}

and apply the blocking technique as in Carbon, Francq, and Tran (2007), p.788. For i = (i1, i2) ∈
Λn ⊂ R2, let n1 and n2 are the numbers of grids in two dimensions, then |Λn| = n = n1n2.
Without loss of generality, we assume n` = 2wr` for ` = 1, 2, where w and r` are constants to be
specified later. For j = (j1, j2), define

U [1](j; s) =

(2j1+1)w∑
i1=2j1w+1

(2j2+1)w∑
i2=2j2w+1

Zτi (s), (B.19)

U [2](j; s) =

(2j1+1)w∑
i1=2j1w+1

2(j2+1)w∑
i2=(2j2+1)w+1

Zτi (s),

U [3](j; s) =

2(j1+1)w∑
i1=(2j1+1)w+1

(2j2+1)w∑
i2=2j2w+1

Zτi (s),

U [4](j; s) =

2(j1+1)w∑
i1=(2j1+1)w+1

2(j2+1)w∑
i2=(2j2+1)w+1

Zτi (s),

and define four blocks as

B[h](s) =

r1−1∑
j1=0

r2−1∑
j2=0

U [h](j; s) for h = 1, 2, 3, 4,

12Unlike the Lemma A.3, We cannot directly use the results for Q∗3n in Carbon, Francq, and Tran (2007) here.
This is because O((logn/(nbn))1/2) is not necassarily o(bn) without further restrictions.
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so that
∑

i∈Λn
Zτi (s) =

∑4
h=1 B[h](s) and Ψ∆M3 = max1≤k≤mn

∣∣∣∑4
h=1 B[h](sk)

∣∣∣. Since these four
blocks have the same number of summands, it suffi ces to show max1≤k≤mn

∣∣B[1](sk)
∣∣ = oa.s.(bn).

To this end, we show that for some εn = o(bn),

P
(

max
1≤k≤mn

∣∣∣B[1](sk)
∣∣∣ > εn

)
≤

mn∑
k=1

P
(∣∣∣B[1](sk)

∣∣∣ > εn

)
(B.20)

≤ mn sup
s∈S0

P
(∣∣∣B[1](s)

∣∣∣ > εn

)
= O(n−c)

for some c > 1 and hence
∑∞

n=1 P
(
max1≤k≤mn

∣∣B[1](sk)
∣∣ > εn

)
< ∞. Then the almost sure

convergence is obtained by the Borel-Cantelli lemma.
For any s ∈ S0, B[1](s) is the sum of r = r1r2 = n/

(
2w2

)
of U [1](j; s)’s. In addition, U [1](j; s)

is measurable with the σ-field generated by Zτi (s) with i belonging to the set

{i = (i1, i2) : 2j`w + 1 ≤ i` ≤ (2j` + 1)w for ` = 1, 2}.

These sets are separated by a distance of at least w. We enumerate the random variables U [1](j; s)

and the corresponding σ-fields with which they are measurable in an arbitrary manner, and refer
to those U [1](j; s)’s as U1(s), U2(s), . . . , Ur(s). By the uniform almost sure law of large numbers in
random fields (e.g., Theorem 2 in Jenish and Prucha (2009)) and the fact that E

[
Ki (s) b−1

n

]
≤ C,

we have that for any t = 1, . . . , r and s ∈ S0,

|Ut(s)| ≤
Cw2τn
n

 1

w2bn

(2j1+1)w∑
i1=2j1w+1

(2j2+1)w∑
i2=2j2w+1

|∆i(si, s)|Ki (s)

 (B.21)

≤ Cw2τn
n

 1

w2

(2j1+1)w∑
i1=2j1w+1

(2j2+1)w∑
i2=2j2w+1

Ki (s) b−1
n


≤ C ′w2τn

n

almost surely for some C,C ′ < ∞. From Lemma 3.6 in Carbon, Francq, and Tran (2007), we
can approximate13 {Ut(s)}rt=1 by another sequence of random variables {U∗t (s)}rt=1 that satisfies
(i) elements of {U∗t (s)}rt=1 are independent, (ii) U

∗
t (s) has the same distribution as Ut(s) for all

t = 1, . . . , r, and (iii)

r∑
t=1

E [|U∗t (s)− Ut(s)|] ≤ rC ′′n−1w2τnαw2,w2(w) (B.22)

for some C ′′ < ∞. Recall that αw2,w2(w) is the α-mixing coeffi cient defined in (8). Then, it
follows that

P
(
B[1](s) > εn

)
≤ P

(
r∑
t=1

|U∗t (s)− Ut(s)| > εn

)
+ P

(∣∣∣∣∣
r∑
t=1

U∗t (s)

∣∣∣∣∣ > εn

)
(B.23)

13This approximation is reminiscient of the Berbee’s lemma (Berbee (1987)) and is based on Rio (1995), who
studies the time series case. It can also be found as Lemma 4.5 in Carbon, Tran, and Wu (1997).
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for any given s ∈ S0, and hence in view of (B.20) and (B.23)

P
(

max
1≤k≤mn

∣∣∣B[1](sk)
∣∣∣ > εn

)
≤ mn sup

s∈S0

P

(
r∑
t=1

|U∗t (s)− Ut(s)| > εn

)

+mn sup
s∈S0

P

(∣∣∣∣∣
r∑
t=1

U∗t (s)

∣∣∣∣∣ > εn

)
≡ PU1 + PU2. (B.24)

First, we let εn = O((log n/n)1/2). By Markov’s inequality, (B.22), and Assumption A-(iii),
we have

PU1 ≤ mn
rC ′′n−1w2τnαw2,w2(w)

εn

≤ C1
n1−2ε (n log n)1/(4+2ϕ)

b2n
· (n log n)1/(4+2ϕ) exp(−C ′1nκ1)

(log n/n)1/2

≤ C1 exp(−C ′1nκ1)

(
log n

n1−2εbn

)2 nκ2

(log n)κ3

for some κ1, κ2, κ3 > 0 and C1, C
′
1 < ∞. Recall that we chose mn = O(τnn

1−2ε/b2n), n = 4w2r,
and τn = (n log n)1/(4+2ϕ). Hence PU1 → 0 as n → ∞, since log n/(n1−2εbn) → 0 and the
exponential term in the last inequality diminishes faster than the polynomial order.

Second, we now choose an integer w such that

w = (n/ (Cwτnλn))1/2 ,

λn = (n log n)1/2

for some large positive constant Cw. Note that, substituting λn and τn into w gives

w = O

(
n(1+ϕ)/4(2+ϕ)

(log n)(3+ϕ)/4(2+ϕ)

)
,

which diverges as n → ∞ for ϕ > 0. Since U∗t (s) has the same distribution as Ut(s), |U∗t (s)| is
also uniformly bounded by C ′n−1τnw

2 almost surely for all t = 1, . . . , r from (B.21). Therefore,
|λnU∗t (s)| ≤ 1/2 for all t if Cw is chosen to be large enough. Using the inequality exp(v) ≤ 1+v+v2

for |v| ≤ 1/2, we have exp(λnU
∗
t (s)) ≤ 1 + λnU

∗
t (s) + λ2

nU
∗
t (s)2. Hence

E[exp(λnU
∗
t (s))] ≤ 1 + λ2

nE
[
U∗t (s)2

]
≤ exp

(
λ2
nE
[
U∗t (s)2

])
(B.25)

since E [U∗t (s)] = 0 and 1+v ≤ exp(v) for v ≥ 0. Using the fact that P(X > c) ≤ E[exp(Xa)]/ exp(ac)

for any random variable X and nonrandom constants a and c, and that {U∗t (s)}rt=1 are indepen-
dent, we have

P

(∣∣∣∣∣
r∑
t=1

U∗t (s)

∣∣∣∣∣ > εn

)

= P

(
r∑
t=1

λnU
∗
t (s) > λnεn

)
+ P

(
−

r∑
t=1

λnU
∗
t (s) > λnεn

)
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≤
E
[
exp

(
λn
∑r

t=1
U∗t (s)

)]
+ E

[
exp

(
−λn

∑r

t=1
U∗t (s)

)]
exp(λnεn)

≤ 2 exp(−λnεn) exp

(
λ2
n

r∑
t=1

E
[
U∗t (s)2

])
(B.26)

by (B.25). However, using the same argument as in (B.15) above, we can show that

E
[
U∗t (s)2

]
≤

∑
1≤i1≤w
1≤i2≤w

E
[
Zτi (s)2

]
+

∑
i 6=j

1≤i1,i2≤w
1≤j1,j2≤w

Cov
[
Zτi (s), Zτj (s)

]
≤ C2w

2

n2

for some C2 <∞, which does not depend on s given Assumptions A-(v) and (x). It follows that
(B.26) satisfies

sup
s∈S0

P

(∣∣∣∣∣
r∑
t=1

U∗t

∣∣∣∣∣ > εn

)
≤ 2 exp

(
−λnεn +

C2λ
2
nrw

2

n2

)
(B.27)

= 2 exp
(
−λnεn + C2λ

2
nn
−1
)
.

Recall that we chose εn = O((log n/n)1/2), hence there exists C∗ > 0 such that εn = C∗λ−1
n log n

and
−λnεn + C2λ

2
nn
−1 = −C∗ log n+ C2 log n = − (C∗ − C2) log n.

Therefore, in view of (B.27), we have

PU2 = mn sup
s∈S0

P

(∣∣∣∣∣
r∑
t=1

U∗t

∣∣∣∣∣ > εn

)

≤ 2mn

nC∗−C2
=

2n1−2ε (n log n)1/(4+2ϕ)

nC∗−C2b2n
≤ C3

(
log n

n1−2εbn

)2 1

(log n)κ4 nκ5

for some C3 <∞, κ4 = 2− (1/ (4 + 2ϕ)) > 2, and κ5 = (C∗−C2)− 3(1− 2ε)− (1/ (4 + 2ϕ)) > 1

by choosing C∗ suffi ciently large (e.g., C∗ > C2 + 17/4). Since log n/(n1−2εbn) → 0, we have
PU2 ≤ O(n−κ5)→ 0 as n→∞. Therefore, the desired result follows since εn = O((log n/n)1/2) =

o(bn) from Assumption A-(ix) and PU1 + PU2 = O(n−c) for some c > 1. �

Proof of Lemma A.6 For a given s ∈ S0, we first show (A.12). We consider the case with
γ(s) > γ0(s), and the other direction can be shown symmetrically. Since c>0 D(·, s)c0f (·, s) is
continuous at γ0(s) and c>0 D(γ0(s), s)c0f (γ0(s), s) > 0 from Assumptions A-(vii) and (viii),
there exists a suffi ciently small C(s) > 0 such that

`D(s) = inf
|γ(s)−γ0(s)|<C(s)

c>0 D(γ(s), s)c0f (γ(s), s) > 0. (B.28)

By the mean value expansion and the fact that Tn (γ; s) = c>0 (Mn (γ(s); s)−Mn (γ0(s); s))c0, we
have

E [Tn (γ; s)] =

∫ ∫ γ(s)

γ0(s)
E
[(
c>0 xi

)2
|q, s+ bnt

]
f(q, s+ bnt)K (t) dqdt

= (γ(s)− γ0(s)) c>0 D(γ̃(s), s)c0f (γ̃(s), s)
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for some γ̃(s) ∈ (γ0(s), γ(s)), which yields

E [Tn (γ; s)] ≥ (γ (s)− γ0 (s)) `D(s). (B.29)

Furthermore, if we let ∆i(γ; s) = 1i (γ (s)) − 1i (γ0 (s)) and Zn,i(s) =
(
c>0 xi

)2
∆i(γ; s)Ki (s) −

E[
(
c>0 xi

)2
∆i(γ; s)Ki (s)], using a similar argument as (B.2), we have

E
[
(Tn (γ; s)− E [Tn (γ; s)])2

]
(B.30)

=
1

n2b2n

∑
i∈Λn

E
[
Z2
n,i(s)

]
+

1

n2b2n

∑
i,j∈Λn,i 6=j

Cov[Zn,i(s), Zn,j(s)]

≤ C1 (s)

nbn
(γ (s)− γ0 (s))

for some C1(s) <∞.
We suppose n is large enough so that r(s)φ1n ≤ C(s). Similarly as Lemma A.7 in Hansen

(2000), we set γg for g = 1, . . . , g + 1 such that, for any s ∈ S0, γg (s) = γ0 (s) + 2g−1r(s)φ1n,
where g is an integer satisfying γg (s)−γ0 (s) = 2g−1r(s)φ1n ≤ C(s) and γg+1 (s)−γ0 (s) > C(s).
Then Markov’s inequality and (B.30) yield that for any fixed η(s) > 0,

P

(
max

1≤g≤g

∣∣∣∣∣ Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] − 1

∣∣∣∣∣ > η(s)

)
(B.31)

≤ P

(
max

1≤g≤g

∣∣∣∣∣Tn
(
γg; s

)
− E

[
Tn
(
γg; s

)]
E
[
Tn
(
γg; s

)] ∣∣∣∣∣ > η(s)

)

≤ 1

η2(s)

g∑
g=1

E
[(
Tn
(
γg; s

)
− E

[
Tn
(
γg; s

)])2]∣∣E [Tn (γg; s)]∣∣2
≤ 1

η2(s)

g∑
g=1

C1 (s) (nbn)−1 (γ (s)− γ0 (s))

|(γ (s)− γ0 (s)) `D(s)|2

≤ 1

η2(s)

g∑
g=1

C1 (s) (nbn)−1

2g−1r(s)φ1n`
2
D(s)

≤ C1 (s)

η2(s)r(s)`2D(s)

∞∑
g=1

1

2g−1
× 1

n2ε
,

≤ ε(s)

which can be arbitrarily small with large enough n. From eq. (33) of Hansen (2000), for any
γ (s) such that r(s)φ1n ≤ γ (s)− γ0 (s) ≤ C(s), there exists some g∗ satisfying γg∗ (s)− γ0 (s) <

γ (s)− γ0 (s) < γg∗+1 (s)− γ0 (s), and then

Tn (γ; s)

|γ (s)− γ0 (s)| ≥
Tn
(
γg∗ ; s

)
E
[
Tn
(
γg∗ ; s

)] × E
[
Tn
(
γg∗ ; s

)]∣∣γg∗+1 (s)− γ0 (s)
∣∣ (B.32)

≥
{

1− max
1≤g≤g

∣∣∣∣∣ Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] − 1

∣∣∣∣∣
}

E
[
Tn
(
γg∗ ; s

)]∣∣γg∗+1 (s)− γ0 (s)
∣∣
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≥ (1− η (s))

∣∣γg∗ (s)− γ0 (s)
∣∣ `D(s)∣∣γg∗+1 (s)− γ0 (s)

∣∣
from (B.29), where |γg∗ (s)− γ0 (s) |`D(s)/|γg∗+1 (s)− γ0 (s) | is some finite non-zero constant by
construction. Hence, in view of (B.32), we can find CT (s) <∞ such that

P

(
inf

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Tn (γ; s)

|γ(s)− γ0 (s)| < CT (s)(1− η(s))

)
≤ ε(s)

for any ε(s) > 0. The proof for (A.13) is similar to that for (A.12) and hence omitted.
We next show (A.14). For expositional simplicity, we present the case of scalar xi, and so is

Ln(γ; s). Similarly as (B.30), we have

E
[
|Ln (γ; s)|2

]
≤ C2 (s) |γ(s)− γ0(s)| (B.33)

for some C2(s) < ∞. By defining γg in the same way as above, Markov’s inequality and (B.33)
yields that for any fixed η(s) > 0,

P

(
max

1≤g≤g

∣∣Ln (γg; s)∣∣√
an
(
γg (s)− γ0 (s)

) > η(s)

4

)
≤ 16

η2(s)

∞∑
g=1

E
[
Ln
(
γg, s

)2]
an
∣∣γg (s)− γ0 (s)

∣∣2 (B.34)

≤ 16

η2(s)

∞∑
g=1

C2 (s)

an
∣∣γg (s)− γ0 (s)

∣∣
≤ 16C2 (s)

η2(s)r(s)

∞∑
g=1

1

2g−1

since an = φ−1
1n . This probability is arbitrarily close to zero if r(s) is chosen large enough. It is

worth to note that (B.34) provides the maximal (or sharp) rate of φ1n as a
−1
n because we need

an
∣∣γg (s)− γ0 (s)

∣∣ = O(φ1nan) = O(1) as n→∞ at most, which is also valid in (B.31).
Similarly, from Lemma A.1, we have

P

(
max

1≤g≤g
sup

γg(s)≤γ(s)≤γg+1(s)

∣∣Ln (γ; s)− Ln
(
γg; s

)∣∣
√
an
(
γg(s)− γ0 (s)

) >
η (s)

4

)
(B.35)

≤
ḡ∑
g=1

P

(
sup

γg(s)≤γ(s)≤γg+1(s)

∣∣Ln (γ; s)− Ln
(
γg; s

)∣∣ > √an (γg (s)− γ0 (s)
) η (s)

4

)

≤
∞∑
g=1

C3 (s)
∣∣γg+1(s)− γg(s)

∣∣2
η4 (s) a2

n

∣∣γg (s)− γ0 (s)
∣∣4

≤ C ′3 (s)

η4 (s) r(s)2

for some C3(s), C ′3(s) <∞, where γg (s) = γ0 (s)+2g−1r(s)φ1n. This probability is also arbitrarily
close to zero if r(s) is chosen large enough. Since

sup
r(s)φ1n<|γ(s)−γ0(s)|<C(s)

|Ln (γ; s)|
√
an (γ(s)− γ0 (s))

(B.36)
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≤ 2 max
1≤g≤g

∣∣Ln (γg; s)∣∣√
an
(
γg (s)− γ0 (s)

) + 2 max
1≤g≤g

sup
γg(s)≤γ(s)≤γg+1(s)

∣∣Ln (γ; s)− Ln
(
γg; s

)∣∣
√
an
(
γg(s)− γ0 (s)

) ,
(B.34) and (B.35) yield

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

|Ln (γ; s)|
√
an (γ(s)− γ0 (s))

> η (s)

)

≤ P

(
2 max

1≤g≤g

∣∣Ln (γg; s)∣∣√
an
(
γg (s)− γ0 (s)

) > η (s)

2

)

+P

(
2 max

1≤g≤g
sup

γg(s)≤γ(s)≤γg+1(s)

∣∣Ln (γ; s)− Ln
(
γg; s

)∣∣
√
an
(
γg(s)− γ0 (s)

) >
η (s)

2

)
≤ ε(s)

for any ε(s) > 0 if we pick r(s) suffi ciently large. �

Proof of Lemma A.7 Using the same notations in Lemma A.5, (A.4) yields

nε
(
θ̂(γ̂(s))− θ0

)
(B.37)

=

{
1

nbn
Z̃(γ̂(s); s)>Z̃(γ̂(s); s)

}−1

×
{
nε

nbn
Z̃(γ̂(s); s)>ũ(s)− nε

nbn
Z̃(γ̂(s); s)>

(
Z̃(γ̂(s); s)− Z̃(γ0(si); s)

)
θ0

}
≡ Θ−1

A1(s) {ΘA2(s)−ΘA3(s)} .

Let M(s) ≡
∫∞
−∞D(q, s)f (q, s) dq <∞. For the denominator ΘA1(s), we have

ΘA1(s) =

(
(nbn)−1

∑
i∈Λn

xix
>
i Ki(s) Mn (γ̂(s); s)

Mn (γ̂(s); s) Mn (γ̂(s); s)

)
(B.38)

→p

(
M(s) M (γ0(s); s)

M (γ0(s); s) M (γ0(s); s)

)
,

where M (γ; s) < ∞ is defined in (A.2), which is continuously differentiable in γ. Note that
|Mn (γ̂(s); s)−M (γ0(s); s) | ≤ |Mn (γ̂(s); s)−M (γ̂(s); s) |+ |M (γ̂(s); s)−M (γ0(s); s) | = op(1)

from Lemma A.3 and the pointwise consistency of γ̂(s) in Lemma A.5. In addition, we have
(nbn)−1

∑
i∈Λn

xix
>
i Ki (s) →p M(s) from the standard kernel estimation result. Note that the

probability limit of ΘA1(s) is positive definite since both M(s) and M (γ0(s); s) are positive
definite and

M(s)−M (γ0(s); s) =

∫ ∞
γ0(s)

D(q, s)f (q, s) dq > 0

for any γ0(s) ∈ Γ from Assumption A-(viii).
For the numerator part ΘA2(s), we have ΘA2(s) = Op(a

−1/2
n ) = op(1) because

1√
nbn

Z̃(γ̂(s); s)>ũ(s) =

(
(nbn)−1/2

∑
i∈Λn

xiuiKi(s)

Jn (γ̂(s); s)

)
= Op (1) (B.39)
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from Lemma A.3 and the pointwise consistency of γ̂(s) in Lemma A.5. Note that the standard
kernel estimation result gives (nbn)−1/2

∑
i∈Λn

xiuiKi (s) = Op(1). Moreover, we have

ΘA3(s) =

(
(nbn)−1

∑
i∈Λn

xix
>
i c0 {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

(nbn)−1
∑

i∈Λn
xix
>
i c01i (γ̂(s)) {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

)
(B.40)

and

1

nbn

∑
i∈Λn

c>0 xix
>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s) (B.41)

≤ ‖c0‖ ‖Mn (γ̂(s); s)−Mn (γ0(si); s)‖
≤ ‖c0‖ {‖Mn (γ̂(s); s)−Mn (γ0(s); s)‖+Op(bn)}
= op(1),

where the second inequality is from (A.6) and the last equality is because Mn (γ; s) →p M (γ; s)

from Lemma A.3, which is continuous in γ and γ̂(s)→p γ0(s) in Lemma A.5. Since

1

nbn

∑
i∈Λn

xix
>
i c01i (γ̂(s)) {1i (γ̂(s))− 1i (γ0 (si))}Ki (s) (B.42)

≤ ‖c0‖ ‖Mn (γ̂(s); s)−Mn (γ0(si); s)‖ = op(1)

from (B.41), we have ΘA3(s) = op(1) as well, which completes the proof. �

Proof of Lemma A.8 First, for A∗n (r, s), we consider the case with r > 0. Let ∆i(r, s) =

1i (γ0 (s) + r/an) − 1i (γ0 (s)) and hi(r, s) =
(
c>0 xi

)2
∆i(r, s)Ki (s). Recall that δ0 = c0n

−ε =

c0(an/ (nbn))1/2. By change of variables and Taylor expansion, Assumptions A-(v), (viii), and (x)
imply that

E [A∗n (r, s)] =
an
nbn

∑
i∈Λn

E [hi(r, s)] (B.43)

= an

∫∫ γ0(s)+r/an

γ0(s)
E
[(
c>0 xi

)2
|q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

= rc>0 D (γ0 (s) , s) c0f (γ0 (s) , s) +O

(
1

an
+ b2n

)
,

where the third equality holds under Assumption A-(vi). Next, we have

V ar [A∗n (r, s)] =
a2
n

n2b2n
V ar

[∑
i∈Λn

hi(r, s)

]
(B.44)

=
a2
n

nb2n
V ar [hi(r, s)] +

a2
n

n2b2n

∑
i,j∈Λn
i 6=j

Cov [hi(r, s), hj(r, s)]

≡ ΨA1(r, s) + ΨA2(r, s).

Taylor expansion and Assumptions A-(vii), (viii), and (x) lead to

ΨA1(r, s) =
an
nbn

(
an
bn
E
[(
c>0 xi

)4
∆i(r, s)K

2
i (s)

])
− 1

n

(
an
bn
E
[(
c>0 xi

)2
∆i(r, s)Ki (s)

])2
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= O

(
an
nbn

+
1

n

)
= O

(
n−2ε +

1

n

)
since ∆i(r, s)

2 = ∆i(r, s) for r > 0, where each moment term is bounded as in (B.43). For ΨA2,
we define a sequence of integers κn = O

(
n`
)
for some ` > 0 such that κn → ∞ and κ2

n/n → 0,
and decompose

ΨA2(r, s) =
a2
n

n2b2n

∑
i,j∈Λn

0<λ(i,j)≤κn

Cov [hi(r, s), hj(r, s)] +
a2
n

n2b2n

∑
i,j∈Λn

λ(i,j)>κn

Cov [hi(r, s), hj(r, s)]

= Ψ′A2(r, s) + Ψ′′A2(r, s).

Then, since

Cov

[
an
bn
hi(r, s),

an
bn
hj(r, s)

]
≤ r2E

[(
c>0 xi

)2 (
c>0 xj

)2
|(qi, qj , si, sj) = (γ0 (s) , γ0 (s) , s, s)

]
f (γ0 (s) , γ0 (s) , s, s) + o (1)

using a similar argument as in (B.4) and (B.43), similarly as the proof of Ψ
[1]
14,3(s) in Lemma A.1,

we have
Ψ′A2(r, s) ≤ Cr2κ2

n/n = o (1)

for some C < ∞. Furthermore, by the covariance inequality (A.1) and Assumption A-(iii), we
have ∣∣Ψ′′A2(r, s)

∣∣ ≤ C ′

n2

(
an
bn

) 2+2ϕ
2+ϕ ∑

i,j∈Λn
λ(i,j)>κn

α1,1 (λ (i, j))ϕ/(2+ϕ) E
[
an
bn
|hi(r, s)|2+ϕ

]2/(2+ϕ)

≤ C ′′

n

(
an
bn

) 2+2ϕ
2+ϕ ∑

i∈Λn

n−1∑
m=κn+1

∑
j∈Λn

λ(i,j)∈[m,m+1)

α1,1 (m)ϕ/(2+ϕ)

≤ C ′′

n

(
an
bn

) 2+2ϕ
2+ϕ

∞∑
m=κn+1

m exp (−mϕ/(2 + ϕ))

= O
(
n((1−2ε)(2+2ϕ)/(2+ϕ))−1κn exp(−κnϕ/(2 + ϕ))

)
= o (1) ,

similarly as the proof of Ψ
[2]
14,3(s) in Lemma A.1, because E[(an/bn) |hi(r, s)|2+ϕ] is bounded as

in (B.43) and we set κn such that κn = O(n`) for ` > 0. Hence, the pointwise convergence of
A∗n (r, s) is obtained. Furthermore, since A∗n(r, s) is monotonically increasing in r and the limit
function rc>0 D (γ0 (s) , s) c0f (γ0 (s) , s) is continuous in r, the convergence holds uniformly on any
compact set. Symmetrically, we can show that E [A∗n (r, s)] = −rc>0 D (γ0 (s) , s) c0f (γ0 (s) , s) +

O
(
a−1
n + b2n

)
when r < 0. The uniform convergence also holds in this case using the same

argument as above, which completes the proof for A∗n (r, s).
For B∗n (r, s), Assumption ID-(i) leads to E [B∗n (r, s)] = 0. Let h̃i(r, s) = c>0 xiui∆i(r, s)Ki (s)
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and write

V ar[B∗n (r, s)] =
an
bn
V ar[h̃i(r, s)] +

an
nbn

∑
i,j∈Λn
i 6=j

Cov[h̃i(r, s), h̃j(r, s)]

≡ ΨB1(r, s) + ΨB2(r, s).

As in (B.43), we have

ΨB1(r, s) = |r| c>0 V (γ0 (s) , s) c0f (γ0(s), s)

∫
K2(v)dv +O

(
1

an
+ b2n

)
,

which is nonsingular for |r| > 0 from Assumption A-(viii). For ΨB2(r, s), we define a sequence of
integers κ′n = O(n`

′
) for some `′ > 0 such that κ′n →∞ and (κ′n)2/n1−2ε → 0, and decompose

ΨB2(r, s) =
an
nbn

∑
i,j∈Λn

0<λ(i,j)≤κ′n

Cov[h̃i(r, s), h̃j(r, s)] +
an
nbn

∑
i,j∈Λn

λ(i,j)>κ′n

Cov[h̃i(r, s), h̃j(r, s)]

≡ Ψ′B2(r, s) + Ψ′′B2(r, s).

Then similarly as Ψ′A2 and Ψ′′A2 above, we have∣∣Ψ′B2(r, s)
∣∣ ≤ Cr2(κ′n)2 × bn

an
= O

(
(κ′n)2

n1−2ε

)
= o(1),

∣∣Ψ′′B2(r, s)
∣∣ ≤ C ′

(
an
bn

)ϕ/(2+ϕ) ∞∑
m=κn+1

m exp (−mϕ/(2 + ϕ))

= C ′n(1−2ε)ϕ/(2+ϕ)κ′n exp(−κ′nϕ/(2 + ϕ)) = o(1)

for some C,C ′ <∞. By combining these results, we have

V ar[B∗n (r, s)] = |r| c>0 V (γ0 (s) , s) c0f (γ0(s), s)κ2 + o (1)

with κ2 =
∫
K2(v)dv, and by the CLT for stationary and mixing random field (e.g., Bolthausen

(1982) and Jenish and Prucha (2009)), we have

B∗n (r, s)⇒W (r)
√
c>0 V (γ0 (s) , s) c0f (γ0 (s) , s)κ2

as n→∞, where W (r) is the two-sided Brownian Motion defined in (10).
This pointwise convergence in r can be extended to any finite-dimensional convergence in

r by the fact that Cov [B∗n (r1, s) , B
∗
n (r2, s)] = V ar [B∗n (r1, s)] + o (1) for any r1 < r2, which

is because (1i (γ0 + r2/an)− 1i (γ0 + r1/an))1i (γ0 + r1/an) = 0. The tightness follows from a
similar argument as Jn(γ; s) in Lemma A.1 and the desired result follows by Theorem 15.5 in
Billingsley (1968). �

Proof of Lemma A.9 For the first result, using the same notations in Lemma A.5, we write√
nbn

(
θ̂ (γ̂ (s))− θ0

)
=

{
1

nbn
Z̃(γ̂(s); s)>Z̃(γ̂(s); s)

}−1
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×
{

1√
nbn

Z̃(γ̂(s); s)>ũ(s)− 1√
nbn

Z̃(γ̂(s); s)>
(
Z̃(γ̂(s); s)− Z̃(γ0(si); s)

)
θ0

}
≡ Θ−1

B1(s) {ΘB2(s)−ΘB3(s)}

similarly as (B.37). For the denominator, since ΘB1(s) = ΘA1(s) in (B.37), then Θ−1
B1(s) = Op(1)

from (B.38). For the numerator, we first have ΘB2(s) = Op(1) from (B.39). For ΘB3(s), similarly
as (B.40),

ΘB3(s) =

(
a
−1/2
n

∑
i∈Λn

n−εxix>i δ0 {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

a
−1/2
n

∑
i∈Λn

n−εxix>i δ01i (γ̂(s)) {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

)
.

However, since γ̂(s) = γ0(s) + r(s)φ1n for some r(s) bounded in probability from Theorem 2,
similarly as (B.43), we have

E

[∑
i∈Λn

n−εδ>0 xix
>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

]

≤ an

∣∣∣∣∣
∫∫ max{γ0(s+bnt),γ0(s)+r(s)φ1n}

min{γ0(s+bnt),γ0(s)+r(s)φ1n}
E
[
xix
>
i c0|q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

∣∣∣∣∣
≤ an

∣∣∣∣∣
∫∫ max{γ0(s)+r(s)φ1n,γ0(s)}

min{γ0(s)+r(s)φ1n,γ0(s)}
E
[
xix
>
i c0|q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

∣∣∣∣∣
+an

∣∣∣∣∣
∫∫ max{γ0(s+bnt),γ0(s)}

min{γ0(s+bnt),γ0(s)}
E
[
xix
>
i c0|q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

∣∣∣∣∣
= anφ1n |r(s)| |D (γ0 (s) , s) c0| f (γ0 (s) , s) +O(anbn)

= O(1)

as anφ1n = 1 and anbn = n1−2εb2n → % <∞. We also have

V ar

[∑
i∈Λn

n−εxix
>
i δ0 {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

]
= O(n−2ε) = o(1),

similarly as (B.44). Therefore, from the same reason as (B.42), we have ΘB3(s) = Op(a
−1/2
n ) =

op(1), which completes the proof.
For the second result, given the same derivation for Θ−1

B1(s) and ΘB3(s) above, it suffi ces to
show that

1√
nbn

Z̃(γ̂(s); s)>ũ(s)− 1√
nbn

Z̃(γ0(s); s)>ũ(s) = op(1),

which is implied by Lemma A.1. �

Proof of Lemma A.10 First, we consider the case with r > 0. For a fixed s ∈ S0, we have

{1[q ≤ γ0 (s) + r/an]− 1[q ≤ γ0 (s)]} {1[q ≤ γ0 (s+ bnt)]− 1[q ≤ γ0 (s)]}

=

{
1 [γ0 (s) < q ≤ γ0 (s+ bnt)] if γ0 (s+ bnt) ≤ γ0 (s) + r/an,

1 [γ0 (s) < q ≤ γ0 (s) + r/an] otherwise.
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Denote Dc0(q, s) = c>0 D(q, s)c0f (q, s). Then

E [B∗∗n (r, s)]

= an

∫∫
c>0 D(q, s+ bnt)c0 {1[q ≤ γ0 (s) + r/an]− 1[q ≤ γ0 (s)]}

×{1[q ≤ γ0 (s+ bnt)]− 1[q ≤ γ0 (s)]}K (t) f (q, s+ bnt) dqdt

= an

∫
T ∗1 (r;s)

∫ γ0(s+bnt)

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt

+an

∫
T ∗2 (r;s)

∫ γ0(s)+r/an

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt

≡ B∗∗n1(r, s) +B∗∗n2(r, s),

where

T ∗1 (r; s) = {t : γ0 (s) < γ0 (s+ bnt)} ∩ {t : γ0 (s+ bnt) ≤ γ0 (s) + r/an} ,
T ∗2 (r; s) = {t : γ0 (s) < γ0 (s+ bnt)} ∩ {t : γ0 (s) + r/an < γ0 (s+ bnt)} .

Note that γ0 (s) < γ0 (s) + r/an always holds for r > 0. Similarly as in the proof of Lemma A.4,
we let a positive sequence tn → ∞ such that tnbn → 0 as n → ∞. Since

∫∞
tn
tK(t)dt → 0 by

Assumption A-(x) with tn →∞, both T ∗1 (r; s)∩{t : |t| > tn} and T ∗2 (r; s)∩{t : |t| > tn} becomes
negligible as tn →∞ using the same argument in (B.17). It follows that

B∗∗n1(r, s) = an

∫
T1(r;s)

∫ γ0(s+bnt)

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt+ o (anbn) ,

B∗∗n2(r, s) = an

∫
T2(r;s)

∫ γ0(s)+r/an

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt+ o (anbn) ,

where

T1(r; s) = T ∗1 (r; s) ∩ {t : |t| ≤ tn},
T2(r; s) = T ∗2 (r; s) ∩ {t : |t| ≤ tn}.

Recall that anbn = n1−2εb2n → % < ∞ and hence o (anbn) = o(1). We consider three cases of
γ̇0(s) > 0, γ̇0(s) < 0, and γ̇0(s) = 0 separately.

First, we suppose γ̇0(s) > 0. For any fixed ε > 0, it holds tnbn ≤ ε if n is suffi ciently
large. Therefore, for both T1(r; s) and T2(r; s), γ0 (s) < γ0 (s+ bnt) requires that t > 0 for
suffi ciently large n. Furthermore, γ0 (s+ bnt) < γ0 (s) + r/an implies that t < r/ (anbnγ̇0(s̃))

for some s̃ ∈ [s, s+ bnt], where 0 < r/ (anbnγ̇0(s̃)) < ∞. Therefore, T1(r; s) = {t : t > 0 and
t < r/ (anbnγ̇0(s̃))} for suffi ciently large n. It follows that, by Taylor expansion,

B∗∗n1(r, s) = an

∫ r/(anbnγ̇0(s̃))

0

∫ γ0(s+bnt)

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt

= anbnDc0(γ0(s), s)γ̇0(s)

∫ r/(anbnγ̇0(s̃))

0
tK (t) dt+ anbnO (bn)

= %Dc0(γ0(s), s)γ̇0(s)K1 (r, %; s) + o(1)

for suffi ciently large n, since anbn = n1−2εb2n → % < ∞ and s̃ → s as n → ∞. Similarly,
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since γ0 (s) + r/an < γ0 (s+ bnt) implies t > r/ (anbnγ̇0(s̃)) for some s̃ ∈ [s, s+ bnt], we have
T2(r; s) = {t : t > 0 and t > r/ (anbnγ̇0(s̃))}. Hence,

B∗∗n2(r, s) = an

∫ tn

r/(anbnγ̇0(s̃))

∫ γ0(s)+r/an

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt

= rDc0(γ0(s), s)

∫ tn

r/(anbnγ̇0(s̃))
K (t) dt+O(bn)

= rDc0(γ0(s), s)

{
1

2
−K0 (r, %; s)

}
+ o(1)

for suffi ciently large n. Recall that |K0 (r, %; s)| ≤ 1/2 and |K1 (r, %; s)| ≤ 1/2.
When γ̇0(s) < 0, −∞ < r/ (anbnγ̇0(s)) < 0 and we can similarly derive

B∗∗n1(r, s) = an

∫ 0

r/(anbnγ̇0(s̃))

∫ γ0(s+bnt)

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt

= −%Dc0(γ0(s), s)γ̇0(s)K1 (r, %; s) + o (1) ,

B∗∗n2(r, s) = an

∫ r/(anbnγ̇0(s̃))

−tn

∫ γ0(s)+r/an

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt

= rDc0(γ0(s), s)

{
1

2
−K0 (r, %; s)

}
+ o (1) .

When γ̇0(s) = 0, it suffi ces to consider γ0(s) as the local minimum, so that γ̇0(t) ≤ 0 for
t ∈ [s − ε, s] and γ̇0(t) ≥ 0 for t ∈ [s, s + ε] for some small ε. In this case, based on the same
argument as (B.18),

T1(r; s) = {t : γ0 (s+ bnt) ≤ γ0 (s) + r/an} ∩ {t : |t| ≤ tn},
T2(r; s) = {t : γ0 (s) + r/an < γ0 (s+ bnt)} ∩ {t : |t| ≤ tn}.

Therefore, for suffi ciently large n,

B∗∗n1(r, s) = an

∫ tn

0

∫ γ0(s+bnt)

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt

= −%Dc0(γ0(s), s)γ̇0(s)

∫ ∞
0

tK (t) dt+ o (1) = o (1) ,

B∗∗n2(r, s) = an

∫ r/(anbnγ̇0(s̃))

−tn

∫ γ0(s)+r/an

γ0(s)
Dc0(q, s+ bnt)K (t) dqdt

= rDc0(γ0(s), s)

{
1

2
−K0 (r, %; s)

}
+ o (1) = o (1)

since K0 (r, %; s) = 1/2 when γ̇0(s) = 0.
By combining all three cases and the symmetric argument for r < 0, we have

E [B∗∗n (r, s)] = |r| Dc0(γ0(s), s)

{
1

2
−K0 (r, %; s)

}
+ %Dc0(γ0(s), s) |γ̇0(s)| K1 (r, %; s) + o (1) .

Furthermore, we have |B∗∗n (r, s)| ≤
∑

i∈Λn
(δ>0 xi)

2 |1i (γ0 (s) + r/an)− 1i (γ0 (s))|Ki (s) and hence
V ar [B∗∗n (r, s)] = O(n−2ε) = o(1) from (B.44), which establishes the pointwise convergence for
each r. The tightness follows from a similar argument as in Lemma A.1 and the desired result
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follows by Theorem 15.5 in Billingsley (1968). �

Proof of Lemma A.11 Define Wµ(r) = W (r) + µ(r), τ+ = arg maxr∈R+ Wµ(r), and τ− =

arg maxr∈R−Wµ(r). The process Wµ(·) is a Gaussian process, and hence Lemma 2.6 of Kim
and Pollard (1990) implies that τ+ and τ− are unique almost surely. Recall that we define
W (r) = W1(−r)1[r < 0] + W2(r)1[r > 0], where W1(·) and W2(·) are two independent standard
Wiener processes defined on R+. We claim that

E[τ+] = −E[τ−] <∞, (B.45)

which gives the desired result.
The equality in (B.45) follows directly from the symmetry (i.e., P(τ+ ≤ t) = P(τ− ≥ −t) for

any t > 0) and the fact that W1 is independent of W2. Now, we focus on r > 0 and show that
E[τ+] <∞. First, for any r > 0,

P (Wµ(r) ≥ 0) = P (W2(r) ≥ −µ(r)) = P
(
W2(r)√

r
≥ −µ(r)√

r

)
= 1− Φ

(
−µ(r)√

r

)
,

where Φ(·) denotes the standard normal distribution function. Since the sample path of Wµ(·) is
continuous, for some r > 0, we then have

E[τ+] =

∫ ∞
0

{
1− P

(
τ+ ≤ r

)}
dr

=

∫ r

0
P
(
τ+ > r

)
dr +

∫ ∞
r
P
(
τ+ > r

)
dr

≤ C1 +

∫ ∞
r
P
(
Wµ(τ+) ≥ 0 and τ+ > r

)
dr

≤ C1 +

∫ ∞
r
P (Wµ(r) ≥ 0) dr

= C1 +

∫ ∞
r

(
1− Φ

(
−µ(r)√

r

))
dr (B.46)

for some C1 < ∞, where the first inequality is because Wµ(τ+) = maxr∈R+ Wµ(r) ≥ 0 given
Wµ(0) = 0, and the second inequality is because P (Wµ(r) ≥ 0) is monotonically decreasing to
zero on [r,∞) by assumption. The second term in (B.46) can be bounded as follows. Using the
change of variables t = rε, integral by parts, and the condition that r−(1/2+ε)µ(r) monotonically
decreases to −∞ on [r,∞) for some ε > 0, we have∫ ∞

r

(
1− Φ

(
−µ(r)√

r

))
dr ≤ C2

∫ ∞
r

(1− Φ (rε)) dr

= C3

∫ ∞
r1/ε

(1− Φ (t)) dt1/ε

= C4 + C5

∫ ∞
r1/ε

t1/εφ(t)dt <∞

for some Cj < ∞ for j = 2, 3, 4, 5, where φ(·) denotes the standard normal density function and
we use limt→∞ t1/ε (1− Φ (t)) = 0. The same result can be obtained for r < 0 symmetrically,
which completes the proof. �
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Proof of Lemma A.12 For given (%, s), we simply denote µ(r) = µ (r, %; s). Then, for the kernel
functions satisfying Assumption A-(x), it is readily verified that µ(0) = 0, µ(r) is continuous in
r, and µ(r) is symmetric about zero. To check the monotonically decreasing condition, for r > 0,
we write

µ(r) = −r
∫ rC1

0
K(t)dt+ C2

∫ rC1

0
tK(t)dt,

where C1 and C2 are some positive constants depending on (%, |γ̇0(s)| , ξ(s)) from (A.22). We
consider the two possible cases.

First, if K(·) has a bounded support, say [−r, r] for some 0 < r <∞, then µ(r) = −rC3 +C4

for r > r and some 0 < C3, C4 < ∞. Thus, µ(r)r−(1/2+ε) is monotonically decreasing to −∞ on
[r,∞) for any ε ∈ (0, 1/2).

Second, if K(·) has an unbounded support,

µ(r)r−((1/2)+ε) = −r1/2−ε
∫ rC1

0
K(t)dt+ r−(1/2+ε)C2

∫ rC1

0
tK(t)dt,

which goes to −∞ as r → ∞ since
∫ rC1

0 tK(t)dt ≤
∫∞

0 tK(t)dt < ∞ and
∫ rC1

0 K(t)dt > 0. We
can verify the monotonicity since

∂

∂r

{
µ(r)r−((1/2)+ε)

}
= −

(
1

2
− ε
)
r−(1/2+ε)

∫ rC1

0
K(t)dt− r1/2−εC1K(C1r)

−
(

1

2
+ ε

)
r−(3/2+ε)C2

∫ rC1

0
tK(t)dt+ r1/2−εC2

1C2K(C1r)

= −r−(1/2+ε)

{(
1

2
− ε
)∫ rC1

0
K(t)dt+ rK(C1r)

(
C1 − C2

1C2

)}
−
(

1

2
+ ε

)
r−3/2−εC2

∫ rC1

0
tK(t)dt

by the Leibniz integral rule. For r > r for some large enough r and ε ∈ (0, 1/2), this derivative
is strictly negative because (1/2 − ε)

∫ rC1

0 K(t)dt > 0 and limr→∞ rK(r) = 0, which proves
µ(r)r−((1/2)+ε) is monotonically decreasing on [r,∞). The case with r < 0 follows symmetrically.
�

To prove Lemma A.13, we first present the following two lemmas.

Lemma B.3 There exist constants C∗ and C̄∗ such that for any γ (·) ∈ Gn(S0; Γ)

sup
s∈S0

|Tn (γ; s)− E [Tn (γ; s)]| ≤ C∗
(

sup
s∈S0

|γ (s)− γ0 (s)| log n

nbn

)1/2

sup
s∈S0

∣∣Tn (γ; s)− E
[
Tn (γ; s)

]∣∣ ≤ C̄∗
(

sup
s∈S0

|γ (s)− γ0 (s)| log n

nbn

)1/2

almost surely when n1−2εb2n → % <∞.

Proof of Lemma B.3 We only prove the first results for Tn (γ; s) because the proof for Tn (γ; s)

is identical. We define

φ3n = ‖γ − γ0‖∞
log n

nbn
,

28



where ‖γ − γ0‖∞ = sups∈S0
|γ (s)− γ0 (s)|, which is bounded since γ (s) ∈ Γ, a compact set, for

any s. In addition, when ‖γ − γ0‖∞ = 0, Tn (γ; s) = 0 and hence the result trivially holds. So
we suppose ‖γ − γ0‖∞ > 0 without loss of generality. Similar to the proof of Lemma A.3, we let
τn = (n log n)1/(4+2ϕ) with ϕ > 0 given in Assumption A-(v) and

T τn (γ, s) =
1

nbn

∑
i∈Λn

(
c>0 xi

)2
|∆i(γ; s)|Ki (s)1τn , (B.47)

where ∆i(γ; s) = 1i (γ (s)) − 1i (γ0 (s)) and 1τn = 1[
(
c>0 xi

)2 ≤ τn]. The triangular inequality
gives that

sup
s∈S0

|Tn (γ; s)− E [Tn (γ; s)]| ≤ sup
s∈S0

|T τn (γ; s)− Tn(γ; s)|

+ sup
s∈S0

|E [T τn (γ; s)]− E [Tn (γ; s)]|

+ sup
s∈S0

|T τn (γ; s)− E [T τn (γ; s)]|

≡ PT1 + PT2 + PT3,

and we bound each of the three terms as follows.
First, we show PT1 = 0 almost surely if n is suffi ciently large. By Markov’s and Hölder’s

inequalities,

P
((

c>0 xi
)2
|∆i(γ; s)| > τn

)
≤ Cτ−(4+2ϕ)

n E
[∥∥x2

i

∥∥2(2+ϕ)
]
≤ C ′ (n log n)−1

for some C,C ′ <∞ from Assumption A-(v) and the fact that |∆i(γ; s)| ≤ 1. Then, as in the proof
of Lemma A.3, the Borel-Cantelli lemma implies that

(
c>0 xn

)2 |∆n(γ; s)| ≤ τn almost surely for

suffi ciently large n. Since τn → ∞, we have
(
c>0 xi

)2 |∆i(γ; s)| ≤ τn almost surely for all i ∈ Λn
with suffi ciently large n. The desired results hence follows.

Second, we show PT2 ≤ C∗φ
1/2
3n almost surely for some C∗ < ∞ if n is suffi ciently large. For

any s ∈ S0,

|E [T τn (γ; s)]− E [Tn (γ; s)]|

≤ b−1
n E

[∣∣∣∣(c>0 xi)2
1 [min{γ0(s), γ(s)} < qi ≤ max{γ0(s), γ(s)}]Ki (s) (1− 1τn)

∣∣∣∣]
≤

∫ ∫ max{γ0(s),γ(s)}

min{γ0(s),γ(s)}
E
[(
c>0 xi

)2
(1− 1τn) |q, s+ bnt

]
f(q, s+ bnt)K(t)dqdt

≤ τ−(3+2ϕ)
n

∫ ∫ max{γ0(s),γ(s)}

min{γ0(s),γ(s)}
E
[(
c>0 xi

)2(4+2ϕ)
|q, s+ bnt

]
f(q, s+ bnt)K(t)dqdt

≤ Cτ−(3+2ϕ)
n ‖γ − γ0‖∞

for some C < ∞, where E[(c>0 xi)
2(4+2ϕ)|q, s]f(q, s) is uniformly bounded over (q, s) by Assump-

tions A-(v) and (vii); and we use the inequality∫
|a|>τn

afA (a) da ≤ τ−(3+2ϕ)
n

∫
|a|>τn

|a|4+2ϕ fA (a) da ≤ τ−(3+2ϕ)
n E

[
A4+2ϕ

]
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for a generic random variable A. Hence, the desired result follows since

τ
−(3+2ϕ)
n ‖γ − γ0‖∞

φ
1/2
3n

= ‖γ − γ0‖1/2∞
b
1/2
n

n
3+2ϕ
4+2ϕ

− 1
2 (log n)

3+2ϕ
4+2ϕ

+ 1
2

= o (1) ,

where ‖γ − γ0‖∞ is bounded and (3 + 2ϕ)/(4 + 2ϕ)− (1/2) > 0.

Finally, we show PT3 ≤ C∗φ
1/2
3n almost surely for some C∗ < ∞ if n is suffi ciently large,

which follows similarly as the proof of Lemma A.4. To this end, we partition the compact S0 into
mn-number of intervals Ik = [sk, sk+1) for k = 1, . . . ,mn. We choose the integer mn > n such
that mn = O(τnn

(1+ϕ)/(4+2ϕ)/(bnφ
1/2
3n )) and |sk+1 − sk| ≤ C/mn for all k and for some C < ∞.

Note that mn/n = C ′n(1−2ε)/4/
[
(n1−2εb2n)1/4(log n)1/2−1/(4+2ϕ)

]
> 1 for suffi ciently large n and

C ′ provided n1−2εb2n → % <∞. In addition, since we let γ(·) be a cadlag and piecewise constant
function with at most n discontinuity points, which is less than mn, Theorem 28.2 in Davidson
(1994) entails that we can choose these finite partitions such that

sup
s∈Ik
|γ(s)− γ(sk)| = 0 (B.48)

for each k. Then we have

sup
s∈S0

|T τn (γ; s)− E [T τn (γ; s)]| ≤ max
1≤k≤mn

sup
s∈Ik
|T τn (γ; s)− T τn (γ; sk)|

+ max
1≤k≤mn

sup
s∈Ik
|E [T τn (γ; s)]− E [T τn (γ; sk)]|

+ max
1≤k≤mn

|T τn (γ; sk)− E [T τn (γ; sk)]|

≡ ΨT1 + ΨT2 + ΨT3.

Below we show ΨT1, ΨT2, and ΨT3 are all Oa.s.(φ
1/2
3n ).

Part 1: ΨT1 and ΨT2 are both oa.s.(φ
1/2
3n ). Similarly as ΨM1 term in Lemma A.3, we first

decompose |T τn (γ; s)− T τn (γ; sk)| ≤ T τ1n (γ; s, sk) + T τ2n (γ; s, sk), where

T τ1n (γ; s, sk) =
1

nbn

∑
i∈Λn

(
c>0 xi

)2
|∆i(γ; s)−∆i(γ; sk)|Ki (sk)1τn ,

T τ2n (γ; s, sk) =
1

nbn

∑
i∈Λn

(
c>0 xi

)2
|∆i(γ; s)| |Ki (s)−Ki (sk)|1τn .

Since Ki(·) is bounded from Assumption A-(x) and we only consider x2
i ≤ τn,

T τ1n (γ; s, sk)

≤ 1

nbn

∑
i∈Λn

(
c>0 xi

)2
1 [min{γ0(s), γ0(sk)} < qi ≤ max{γ0(s), γ0(sk)}]Ki (sk)1τn

+
1

nbn

∑
i∈Λn

(
c>0 xi

)2
1 [min{γ(s), γ(sk)} < qi ≤ max{γ(s), γ(sk)}]Ki (sk)1τn

≤
{
C1τn
bn

P (min{γ0(s), γ0(sk)} < qi ≤ max{γ0(s), γ0(sk)})

+
C1τn
bn

P (min{γ(s), γ(sk)} < qi ≤ max{γ(s), γ(sk)})
}

(1 + oa.s.(1))
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≤ C ′1τnb
−1
n sup

s∈Ik
|s− sk|+ 0

≤ C ′1τnb
−1
n m−1

n

≤ C ′′1n
−(1+ϕ)/(4+2ϕ)φ

1/2
3n

for C1, C
′
1, C

′′
1 <∞, where the second second equality is by the uniform almost sure law of large

numbers for random fields (e.g., Jenish and Prucha (2009), Theorem 2); the third inequality
is since γ0(·) is continuously differentiable, qi is continuous, and (B.48). Hence, T τ1n (γ; s, sk) =

oa.s.(φ
1/2
3n ), which holds uniformly in s ∈ Ik and k ∈ {1, . . . ,mn}. Similarly, since K(·) is Lipschitz

from Assumption A-(x) and |∆i(γ; s)| ≤ 1,

T τ2n (γ; s, sk) ≤ C2
τn
nbn

∑
i∈Λn

|Ki(s)−Ki(sk2)|

= C2τn

∫ ∣∣∣∣K(t)−K
(
t+

s− sk2

bn

)∣∣∣∣ f (s+ tbn) dt

≤ C ′2
τn
bn
|s− sk2 | ≤

C ′′2 τn
bnmn

= oa.s.

(
φ

1/2
3n

)
for some C2, C

′
2, C

′′
2 < ∞, uniformly in s and k. Hence, ΨT1 = oa.s.(φ

1/2
3n ) and we can readily

verify that ΨT2 = oa.s.(φ
1/2
3n ) similarly.

Part 2: ΨT3 = Oa.s.(φ
1/2
3n ). We let

Zτi (s) = (nbn)−1
{

(c>0 xi)
2∆i(γ; s)Ki (s)1τn − E[(c>0 xi)

2∆i(γ; s)Ki (s)1τn ]
}

and apply the similar proof as Ψ∆M3 in Lemma A.4. In particular, we construct the block B[1](sk)

in the same fashion as (B.20). Then, it suffi ces to show max1≤k≤mn
∣∣B[1](sk)

∣∣ = Oa.s.(φ
1/2
3n ) as

n → ∞. Using the same notations as in Lemma A.4, by the uniform almost sure law of large
numbers for random fields, we have that for any t = 1, . . . , r and s ∈ S0,

|Ut(s)| ≤
C3w

2τn
nbn

 1

w2

(2j1+1)w∑
i1=2j1w+1

(2j2+1)w∑
i2=2j2w+1

|∆i(γ; s)|

 ≤ C3w
2τn ‖γ − γ0‖∞

nbn
(B.49)

almost surely from (B.19), for some C3 < ∞. We also approximate {Ut(s)}rt=1 by a version of
independent random variables {U∗t (s)}rt=1 that satisfies

r∑
t=1

E [|U∗t (s)− Ut(s)|] ≤ rC3 (nbn)−1w2τn ‖γ − γ0‖∞ αw2,w2(w).

Then, similar to (B.24), for some positive C∗ <∞,

P
(

max
1≤k≤mn

∣∣∣B[1](sk)
∣∣∣ > C∗φ

1/2
3n

)
≤ mn sup

s∈S0

P

(
r∑
t=1

|U∗t (s)− Ut(s)| > C∗φ
1/2
3n

)

+mn sup
s∈S0

P

(∣∣∣∣∣
r∑
t=1

U∗t (s)

∣∣∣∣∣ > C∗φ
1/2
3n

)
≡ P̃U1 + P̃U2.
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For P̃U1,

P̃U1 ≤ mn
rC3 (nbn)−1w2τn ‖γ − γ0‖∞ αw2,w2(w)

C∗φ
1/2
3n

≤ C ′3
τ2
nn

(1+ϕ)/(4+2ϕ) ‖γ − γ0‖∞
b2nφ3n

exp(−C ′′3nκ1)

≤ C ′′′3 exp(−C ′′3nκ1)

(
log n

n1−2εbn

)
nκ2

(log n)κ3

for some κ1, κ2, κ3 > 0 and C ′3, C
′′
3 , C

′′′
3 <∞. Hence P̃U1 → 0 as n→∞, since log n/(n1−2εbn)→ 0

and the exponential term in the last inequality diminishes faster than the polynomial order.
For P̃U2, using the same argument as (B.3) in Lemma A.1, we can show that

E
[
U∗t (s)2

]
=

∑
1≤i1≤w
1≤i2≤w

E
[
Zτi (s)2

]
+

∑
i 6=j

1≤i1,i2≤w
1≤j1,j2≤w

Cov
[
Zτi (s), Zτj (s)

]
≤ C4w

2

n2bn
‖γ − γ0‖∞

for some C4 <∞, which does not depend on s given Assumptions A-(v) and (x). We now choose
an integer w such that

w = (nbn/ (Cwτnλn))1/2 ,

λn = (nbn log n)1/2

for some large positive constant Cw. Note that, substituting λn and τn into w gives

w = O

[ nϕ/(2+ϕ)

(log n)(4+ϕ)/(2+ϕ)

(
nb2n
log n

)]1/8
 ,

which diverges as n → ∞ for ϕ > 0 and from Assumption A-(ix). From (B.49), we have
|λnU∗t (s)/ ‖γ − γ0‖1/2∞ | < 1/2 by choosing Cw large enough, and hence

sup
s∈S0

P

(∣∣∣∣∣
r∑
t=1

U∗t (s)

∣∣∣∣∣ > C∗φ
1/2
3n

)
= sup

s∈S0

P

(∣∣∣∣∣
r∑
t=1

λnU
∗
t (s)

‖γ − γ0‖1/2∞

∣∣∣∣∣ > C∗
(

log n

nbn

)1/2
)

≤ 2 exp

(
−C∗λn

(
log n

nbn

)1/2

+
C4λ

2
nrw

2

n2bn

)

= 2 exp

(
−C∗λn

(
log n

nbn

)1/2

+ C4λ
2
n(nbn)−1

)
= 2 exp

(
−C∗ log n+ C ′4 log n

)
for some C4, C

′
4 <∞ as in (B.26) and (B.27). It follows that

P̃U2 = mn sup
s∈S0

P

(∣∣∣∣∣
r∑
t=1

U∗t (s)

∣∣∣∣∣ > C∗φ
1/2
3n

)
≤ 2mn

nC
∗−C′4

≤ C5

(
log n

n1−2εbn

)3/2 1

(log n)κ4 nκ5

for some C5 < ∞, κ4 = 1 − (1/ (4 + 2ϕ)) > 1, and κ5 = (C∗ − C ′4) − 1 − ((1 − 2ε)/2) > 1 by
choosing C∗ suffi ciently large (e.g., C∗ > C ′4 + 5/2). Therefore, P̃U2 ≤ O(n−κ5) → 0 as n → ∞.
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Since P̃U1 + P̃U2 = O(n−c) for some c > 1, we have
∑∞

n=1 P(max1≤k≤mn
∣∣B[1](sk)

∣∣ > C∗φ
1/2
3n ) <∞

and hence we obtain the desired result by the Borel-Cantelli lemma. �

Lemma B.4 There exists some constant CL such that for any γ (·) ∈ Gn(S0; Γ) and any j =
1, . . . ,dim(x)

sup
s∈S0

|Lnj (γ; s)| ≤ CL
(

sup
s∈S0

|γ (s)− γ0 (s)| log n

)1/2

almost surely when n1−2εb2n → % <∞.

Proof of Lemma B.4 The proof is similar to that in Lemma B.3, and we only highlight the
different parts. We assume xi is a scalar, so as Ln(γ; s). As in (B.47), we let

Lτn (γ; s) =
1√
nbn

∑
i∈Λn

xiui∆i(γ; s)Ki (s)1τn ,

where ∆i(γ; s) = 1i (γ (s))−1i (γ0 (s)) and 1τn = 1[|xiui| ≤ τn] with τn = (n log n)1/(4+2ϕ). Since
E[Lτn(γ, s)] = 0, we write

sup
s∈S0

|Ln (γ; s)| ≤ sup
s∈S0

|Lτn (γ; s)− Ln(γ; s)|+ sup
s∈S0

|Lτn (γ; s)|

≡ PL1 + PL2.

Using the same argument as PT1 in the proof of Lemma B.3, we have

P (|xiui| |∆i(γ; s)| > τn) ≤ Cτ−(4+2ϕ)
n E

[
‖xiui‖2(2+ϕ)

]
≤ C ′ (n log n)−1

for some C,C ′ < ∞. Then the Borel-Cantelli lemma implies that |xiui| |∆n(γ; s)| ≤ τn almost
surely for suffi ciently large n. Since τn → ∞, we have |xiui| |∆i(γ; s)| ≤ τn almost surely for all
i ∈ Λn with suffi ciently large n, which yields PL1 = 0 almost surely for a suffi ciently large n.

For PL2, we let φ̃3n = ‖γ − γ0‖∞ log n and write

sup
s∈S0

|Lτn (γ; s)| ≤ max
1≤k≤mn

sup
s∈Ik
|Lτn (γ; s)− Lτn (γ; sk)|+ max

1≤k≤mn
|Lτn (γ; sk)|

≡ ΨL1 + ΨL2,

for some integer mn = O(τnn
(3+2ϕ)/(4+2ϕ)/(bnφ̃

1/2

3n )), where mn/n > 1 for suffi ciently large n. We
let Zτi (s) = (nbn)−1/2xiui∆i(γ; s)Ki (s)1τn , and we choose w = ((nbn) / (Cwτnλn))1/2 for some
large positive constant Cw and λn = (log n)1/2. Then, the rest of the proof follows similarly as
bounding PT3 in the proof of Lemma B.3. �

Proof of Lemma A.13 We first show (A.23). We consider the case with sups∈S0
(γ (s)− γ0 (s)) >

0, and the other direction can be shown symmetrically. We suppose n is large enough so that
rφ2n ≤ C for some r, C ∈ (0,∞) and sups∈S0

(γ (s)− γ0 (s)) ∈
[
rφ2n, C

]
. We also let

` = inf
s∈S0

`D(s) > 0

where `D(s) is defined in (B.28). Then, from (B.29), we have

sup
s∈S0

E [Tn (γ; s)] ≥ ` sup
s∈S0

(γ (s)− γ0 (s)) . (B.50)
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For any ε > 0 and for any γ (·) such that sups∈S0
(γ (s)− γ0 (s)) ∈

[
rφ2n, C

]
, Lemma B.3 and

(B.50) imply that when n is suffi ciently large,

sups∈S0
Tn (γ; s)

sups∈S0
|γ (s)− γ0 (s)|

≥
sups∈S0

E [Tn (γ; s)]− sups∈S0
|Tn (γ; s)− E [Tn (γ; s)]|

sups∈S0
|γ (s)− γ0 (s)|

≥
sups∈S0

E [Tn (γ; s)]

sups∈S0
|γ (s)− γ0 (s)| −

(
sups∈S0

|γ (s)− γ0 (s)| (log n/n)
)1/2

sups∈S0
|γ (s)− γ0 (s)|

≥ `− (log n/n)1/2

rφ
1/2
2n

≥ `− r−1n−ε.

Since ` > 0 does not depend on γ (·) and r−1n−ε → 0 as n→∞, we thus can find CT <∞ such
that

P

 inf
{γ(·)∈Gn(S0;Γ):

rφ2n<sups∈S0
|γ(s)−γ0(s)|<C}

sups∈S0
Tn (γ; s)

sups∈S0
|γ (s)− γ0 (s)| < CT (1− η)

 ≤ ε.
for any ε, η > 0. The proof for (A.24) is similar and hence omitted.

For (A.25), we present the case of scalar xi and so is Ln(γ; s), for expositional simplicity. We
set γg for g = 1, 2, ..., g + 1 such that, for any s ∈ S0, γg (s) = γ0 (s) + 2g−1rφ2n, where g is an
integer satisfying sups∈S0

(γg (s) − γ0 (s)) = 2g−1rφ2n ≤ C and sups∈S0
(γg+1 (s) − γ0 (s)) > C.

Then Lemma B.4 yields that for any η > 0,

P

(
max

1≤g≤g

sups∈S0

∣∣Ln (γg; s)∣∣√
an sups∈S0

(
γg (s)− γ0 (s)

) > η

4

)
(B.51)

≤
g∑
g=1

P

(
sups∈S0

∣∣Ln (γg; s)∣∣√
an sups∈S0

(
γg (s)− γ0 (s)

) > η

4

)

≤ 4

η

g∑
g=1

CL (φ2n log n)1/2

√
an2g−1rφ2n

≤ C ′L
ηr

∞∑
g=1

1

2(g−1)

for some CL, C ′L < ∞. This probability is arbitrarily close to zero if r is chosen large enough.
Following a similar discussion after (B.34), this result also provides the maximal (or sharp) rate
of φ2n as log n/an because we need (log n/an)/φ2n = O(1) but φ2n → 0 as log n/an → 0 with
n → ∞. For a given g, we define Γg as the collection of γ (·) ∈ Gn(S0; Γ) satisfying r2g−1φ2n <

sups∈S0
|γ (s)− γ0 (s)| < r2gφ2n. By a similar argument as (B.51) and Lemma B.4, we have

P

(
max

1≤g≤g
sup
γ∈Γg

sups∈S0

∣∣Ln (γ; s)− Ln
(
γg; s

)∣∣
√
an sups∈S0

(
γg(s)− γ0 (s)

) >
η

4

)
≤ C ′′L

ηr̄
(B.52)

for some C ′′L <∞, which is arbitrarily close to zero if r is chosen large enough. From (B.36), and
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by combining (B.51) and (B.52), we thus have

P

 sup
{γ(·)∈Gn(S0;Γ):

rφ2n<sups∈S0
|γ(s)−γ0(s)|<C}

sups∈S0
|Ln (γ; s)|

√
an sups∈S0

(γ (s)− γ0 (s))
> η


≤ P

(
2 max

1≤g≤g

sups∈S0

∣∣Ln (γg; s)∣∣√
an sups∈S0

(
γg (s)− γ0 (s)

) > η

2

)

+P

(
2 max

1≤g≤g
sup
γ∈Γg

sups∈S0

∣∣Ln (γ; s)− Ln
(
γg; s

)∣∣
√
an sups∈S0

(
γg(s)− γ0 (s)

) >
η

2

)
≤ ε

for any ε, η > 0 if r is chosen suffi ciently large. �

Proof of Lemma A.14 We prove sups∈S0
|γ̂(s)− γ0(s)| = op(1). From (B.37), we have

nε sup
s∈S0

||θ̂(γ̂(s))− θ0|| ≤
(

inf
s∈S0

|ΘA1(s)|
)−1{

sup
s∈S0

|ΘA2(s)|+ sup
s∈S0

|ΘA3(s)|
}
.

Hence, given Lemma A.3 and the standard uniform convergence result of the kernel estimators,
nε sups∈S0

||θ̂(γ̂(s))− θ0|| = op(1) can be obtained similarly as the proof of Lemma A.7, provided
that we have sups∈S0

|γ̂(s)− γ0(s)| →p 0 as n→∞. Recall that γ̂(s) is the minimizer of Υn(γ; s)

in (A.5) and γ0(s) is the minimizer of Υ0(γ; s) in (A.7) for any given s ∈ S0. See Lemma A.5 for
the definitions of Υn(γ; s) and Υ0(γ; s).

Suppose γ̂(s) is not uniformly consistent, implying that there exist η > 0 and ε > 0 such that
for any N ∈ N, there exists n > N satisfying

P
(

sup
s∈S0

|γ̂(s)− γ0(s)| > η

)
= P

(
sup
s∈S0

(γ̂(s)− γ0(s)) > η

)
+ P

(
sup
s∈S0

(γ̂(s)− γ0(s)) < −η
)
> ε

or simply

P
(

sup
s∈S0

(γ̂(s)− γ0(s)) > η

)
> ε (B.53)

without loss of generality. From (A.8), we can define C ∈ (0,∞) such that

inf
s∈S0

∂Υ0(γ0(s); s)

∂γ
> C > 0,

and hence the mean value theorem yields

Υ0(γ̂(s), s)−Υ0(γ0(s), s) =
∂Υ0(γ̃(s), s)

∂γ
(γ̂ (s)− γ0(s))

> C (γ̂ (s)− γ0(s))
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for suffi ciently large n, where γ̃(s) is between γ̂(s) and γ0(s). Therefore,

P
(

sup
s∈S0

{Υ0(γ̂(s), s)−Υ0(γ0(s), s)} > Cη

)
(B.54)

> P
(

inf
s∈S0

∂Υ0(γ0(s); s)

∂γ
sup
s∈S0

(γ̂(s)− γ0(s)) > Cη

)
= P

(
sup
s∈S0

(γ̂(s)− γ0(s)) > η

)
> ε

from (B.53).
However, by construction, Υn(γ̂(s), s)−Υn(γ0(s), s) ≤ 0 for every s ∈ S0, which implies

sup
s∈S0

{Υn(γ̂(s), s)−Υn(γ0(s), s)} ≤ 0 almost surely. (B.55)

Furthermore, using the triangular inequality and the uniform convergence result in Lemma A.3,
we can verify that

sup
(r,s)∈Γ×S0

|Υn(r, s)−Υ0(r, s)| →p 0 (B.56)

as n→∞ from the proof of Lemma A.5. From (B.55) and (B.56), we thus have

P
(

sup
s∈S0

{Υ0(γ̂(s), s)−Υ0(γ0(s), s)} > Cη

)
≤ P

(
sup
s∈S0

{Υ0(γ̂(s), s)−Υn(γ̂(s), s)} > Cη/3

)
+P
(

sup
s∈S0

{Υn(γ̂(s), s)−Υn(γ0(s), s)} > Cη/3

)
+P
(

sup
s∈S0

{Υn(γ0(s), s)−Υ0(γ0(s), s)} > Cη/3

)
≤ (ε∗/3) + (ε∗/3) + (ε∗/3) = ε∗

for any ε∗ > 0 if n is suffi ciently large. It contradicts to (B.54) by choosing ε∗ ≤ ε, hence the
uniform consistency should hold. �

Proof of Lemma A.15 We prove Ξβ2 = op(1) and Ξβ3 = op(1). The results for Ξδ2 and Ξδ3
can be shown symmetrically. For expositional simplicity, we present the case of scalar xi.

For Ξβ2: Note that γ̂(·) belongs to Gn(S0; Γ). We define intervals Ik for k = 1, . . . , n, which
are centered at the discontinuity points of γ̂(s) with length `n such that `n → 0 as n → ∞.
Without loss of generality, we choose `n = O(n−3). Then, we can interpolate on each Ik and
define γ̃(s) as a smooth version of γ̂(s), which satisfies

P
(

sup
s∈S0

|γ̂ (s)− γ̃ (s)| > ε

)
≤ P

(
max

1≤k≤n
sup
s∈Ik
|γ̂ (s)− γ̃ (s)| > ε

)
≤ ε (B.57)

for any ε > 0, if n is suffi ciently large. Since sups∈S0
|γ̂ (s)− γ0(s)| = op(1) from Lemma A.14,

we have
sup
s∈S0

|γ̃ (s)− γ0 (s)| ≤ sup
s∈S0

|γ̂ (s)− γ̃ (s)|+ sup
s∈S0

|γ̂ (s)− γ0 (s)| = op(1) (B.58)
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from (B.57).
Now we define

Gn(γ) =
1√
n

∑
i∈Λn

xiui1 [qi > γ(si) + πn]1S0 ,

and then

Ξβ2 = Gn(γ̂)−Gn(γ0)

= {Gn(γ̂)−Gn(γ̃)}+ {Gn(γ̃)−Gn(γ0)}
≡ ΨG1 + ΨG2.

First, for ΨG1, let ∆π
i (γ̂, γ̃) = 1 [qi > γ̂(si) + πn] − 1 [qi > γ̃(si) + πn]. By construction,

|∆π
i (γ̂, γ̃)| ≤ 1[si ∈ Ik for some k]. Therefore, by the Cauchy-Schwarz inequality and Assumptions

A-(v) and A-(viii),

E [|ΨG1|] ≤ n1/2E [|xiui| |∆π
i (γ̂, γ̃)|1S0 ]

≤ n1/2E
[
(xiui)

2
]1/2 E [(1[si ∈ Ik for some k]1S0)2

]1/2

≤ C1n
1/2 (P[si ∈ Ik ∩ S0 for some k])1/2

≤ C ′1n
1/2n−3/2 = o(1)

for some C1, C
′
1 <∞. Hence, ΨG1 = op(1).

Second, for ΨG2, we let 1τ = 1[|xiui| ≤ τ ] for some τ < ∞. Then, for any ε1 > 0 and
γ : S0 7→ Γ,

P

(
1√
n

∑
i∈Λn

xiui1 [qi > γ(si) + πn] (1− 1τ )1S0 > ε1

)

≤ ε−2
1

1

n
E

(∑
i∈Λn

xiui1 [qi > γ(si) + πn] (1− 1τ )1S0

)2


≤ Cε−2
1 E

[
(xiui)

2 1 [|xiui| > τ ]
]

≤ Cε−2
1 E

[
(xiui)

4
]1/2

(P [|xiui| > τ ])1/2

≤ Cε−2
1 τ−2E

[
(xiui)

4
]

for some C < ∞, where we apply the Markov’s and the Cauchy-Schwarz inequalities. From
Assumption A-(v), by choosing τ suffi ciently large, this probability can be arbitrarily small.
Hence,

Gn(γ) =
1√
n

∑
i∈Λn

xiui1 [qi > γ(si) + πn]1τ1S0 + op(1)

for suffi ciently large n and we simply consider |xiui| ≤ τ almost surely in what follows.
We let F∗ be the class of functions {xu1 [q > γ(s) + πn] for γ ∈ C2[S0]}, where C2[S0] denotes

the family of twice-continuously differentiable functions defined on S0. Using Theorem 2.5.6 in
der Vaart and Wellner (1996), we establish that F∗ is P-Donsker, which requires three elements:
an entropy bound, a maximal inequality, and the chaining argument. For the entropy bound, by
Corollaries 2.7.2 and 2.7.3 in der Vaart and Wellner (1996) (with their r = d = 1 and α = 2),
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F∗ has the same bracketing number (up to a constant) as that for the collection of subgraphs
of C2[S0], so that logN[] (ε,F∗, || · ||∞) ≤ Cε−1/2, where || · ||∞ denotes the uniform norm. For
the maximal inequality, since we consider |xu| ≤ τ , Corollary 3.3 in Valenzuela-Domíguez, Krebs,
and Franke (2017) gives the Bernstein inequality for spatial lattice processes with exponentially
decaying α-mixing coeffi cients. This satisfies the conditions in Lemma 2.2.10 in der Vaart and
Wellner (1996), which implies that for any finite collection of functions γ1, . . . , γm ∈ C2[S0],

E
[

max
1≤k≤m

Gn(γk)

]
≤ C ′

(
log(1 +m) +

√
log(1 +m)

)
(B.59)

for C ′ <∞. For the chaining argument, the same analysis in der Vaart andWellner (1996), pp.131-
132 applies with the following two changes: their envelope function F is |xu|, which satisfies
E
[
F 2
]
< ∞; and their inequality (2.5.5) is implied by (B.59) with m = logN[] (ε,F∗, || · ||∞).

Note that the spatial dependence only shows up in deriving the maximal inequality but not the
entropy or the chaining argument.

Since Donsker implies stochastic equicontinuity, it follows thatGn(·) satisfies, for every positive
ηn → 0,

sup
sups∈S0

|γ(s)−γ′(s)|≤ηn

∣∣Gn(γ)−Gn(γ′)
∣∣→p 0

as n→∞. Therefore, ΨG2 = op(1) since sups∈S0
|γ̃(s)− γ0(s)| = op(1) from (B.58).

For Ξβ3: On the event E∗n that sups∈S0
|γ̂(s)− γ0(s)| ≤ φ2n, we have

E [|Ξβ3|] =
1√
n

∑
i∈Λn

E
[∣∣x2

i δ0

∣∣1 [qi ≤ γ0(si)]1 [qi > γ̂(si) + πn]1S0

]
≤ n1/2−εCE [1 [qi ≤ γ0(si)]1 [qi > γ̂(si) + πn]1S0 ]

≤ n1/2−εCE [1 [qi ≤ γ0(si)]1 [qi > γ0(si)− φ2n + πn]1S0 ]

= n1/2−εC

∫
S0

∫
I(q;s)

f(q, s)dqds

for some 0 < C < ∞, where I(q; s) = {q : q ≤ γ0(s) and q > γ0(s)− φ2n + πn}. Since we define
πn > 0 such that φ2n/πn → 0, it holds that πn−φ2n > 0 for suffi ciently large n. Therefore, I(q; s)

becomes empty for all s when n is suffi ciently large. The desired result follows from Markov’s
inequality and the fact that P (E∗n) > 1− ε for any ε > 0. �

38



S.2 Additional Simulation Results

This section provides additional simulation results. The data generating process is the same as
that in Section 5 in the main text except that γ0(s) = sin(s)/2. Tables S.1 to S.4 below present
the analogous results to those in Tables 2 to 5 in the main text. We also plot the averaged γ̂ (s)

across simulations and the density estimator of δ̂2− δ20 in Figure S.1. The findings are similar to
Figure 3 in the main text.

Table S.1: Bias, RMSE, and Rej. Prob. of the LR Test with i.i.d. Data

s = 0.0 s = 0.5 s = 1.0
n\δ 1 2 3 4 1 2 3 4 1 2 3 4

Bias
100 -0.07 -0.05 -0.04 -0.04 -0.25 -0.19 -0.14 -0.12 -0.44 -0.33 -0.30 -0.27
200 -0.05 -0.02 -0.04 -0.03 -0.21 -0.14 -0.09 -0.06 -0.36 -0.27 -0.22 -0.17
500 -0.03 -0.03 -0.02 -0.02 -0.14 -0.06 -0.04 -0.03 -0.28 -0.13 -0.11 -0.07

RMSE
100 0.27 0.14 0.08 0.06 0.35 0.21 0.12 0.09 0.51 0.37 0.28 0.21
200 0.25 0.08 0.05 0.03 0.30 0.15 0.08 0.05 0.45 0.29 0.20 0.15
500 0.19 0.05 0.02 0.01 0.22 0.08 0.03 0.02 0.37 0.14 0.08 0.05

Rej. Prob. of the LR test
100 0.14 0.09 0.07 0.08 0.16 0.09 0.09 0.07 0.27 0.17 0.14 0.13
200 0.10 0.06 0.06 0.07 0.11 0.07 0.06 0.05 0.19 0.10 0.07 0.07
500 0.08 0.04 0.05 0.07 0.07 0.05 0.04 0.05 0.11 0.06 0.03 0.03

Note: Entries are bias and root mean squared error (RMSE) of the estimator γ̂(s) and rejection probabilities of

the LR test (13) when data are generated from (18) with γ0 (s) = sin(s)/2. The dependence structure is given in

(19) with ρ = 0. The significance level is 5% and the results are based on 1000 simulations.
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Table S.2: Bias, RMSE, and Rej. Prob. of the LR Test with Cross-sectionally Correlated Data

s = 0.0 s = 0.5 s = 1.0
n\δ 1 2 3 4 1 2 3 4 1 2 3 4

Bias
100 -0.04 -0.05 -0.05 -0.07 -0.24 -0.19 -0.15 -0.14 -0.43 -0.37 -0.30 -0.30
200 -0.04 -0.06 -0.05 -0.03 -0.21 -0.12 -0.08 -0.07 -0.40 -0.30 -0.23 -0.19
500 -0.03 -0.02 -0.02 -0.02 -0.16 -0.07 -0.04 -0.03 -0.33 -0.18 -0.11 -0.09

RMSE
100 0.29 0.17 0.11 0.09 0.34 0.23 0.16 0.11 0.48 0.38 0.29 0.26
200 0.28 0.13 0.07 0.04 0.34 0.15 0.09 0.06 0.50 0.33 0.20 0.15
500 0.21 0.06 0.03 0.01 0.28 0.10 0.04 0.02 0.42 0.20 0.10 0.06

Rej. Prob. of the LR test
100 0.18 0.13 0.09 0.08 0.19 0.12 0.10 0.07 0.33 0.21 0.17 0.13
200 0.14 0.06 0.07 0.06 0.13 0.08 0.05 0.06 0.19 0.12 0.09 0.07
500 0.09 0.06 0.06 0.07 0.10 0.05 0.04 0.05 0.11 0.06 0.04 0.04

Note: Entries are bias and root mean squared error (RMSE) of the estimator γ̂(s) and rejection probabilities of

the LR test (13) when data are generated from (18) with γ0 (s) = sin(s)/2. The dependence structure is given in

(19) with ρ = 1 and m = 10. The significance level is 5% and the results are based on 1000 simulations.

Table S.3: Bias and RMSE of the Coeffi cient Estimates

β20 β20+δ20 δ20

n\δ 1 2 3 4 1 2 3 4 1 2 3 4
Bias

100 0.07 0.10 0.07 0.05 -0.07 -0.08 -0.06 -0.03 -0.14 -0.17 -0.14 -0.09
200 0.07 0.06 0.04 0.03 -0.08 -0.06 -0.04 -0.03 -0.17 -0.12 -0.08 -0.06
500 0.06 0.03 0.01 0.01 -0.06 -0.02 -0.01 -0.01 -0.12 -0.05 -0.02 -0.01

RMSE
100 0.35 0.39 0.38 0.36 0.35 0.37 0.39 0.37 0.51 0.56 0.56 0.52
200 0.23 0.23 0.21 0.21 0.24 0.24 0.22 0.23 0.36 0.34 0.30 0.31
500 0.14 0.12 0.11 0.11 0.14 0.13 0.12 0.12 0.22 0.18 0.16 0.17

Note: Entries are bias and root mean squared error (RMSE) of the proposed two-step estimator for β20,

β20 + δ20, and δ20. Data are generated from (18) with γ0 (s) = sin(s)/2, where the dependence structure is given

in (19) with ρ = 0.5 and m = 3. The results are based on 1000 simulations.
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Table S.4: Coverage Prob. of the Confidence Intervals

β20 β20+δ20 δ20

n\δ 1 2 3 4 1 2 3 4 1 2 3 4
Coverage without small sample LRV adjustment

100 0.83 0.86 0.88 0.89 0.85 0.87 0.89 0.87 0.84 0.86 0.89 0.89
200 0.86 0.90 0.93 0.94 0.89 0.90 0.93 0.92 0.84 0.90 0.92 0.93
500 0.87 0.93 0.94 0.93 0.89 0.93 0.94 0.93 0.85 0.94 0.95 0.93

Coverage with small sample LRV adjustment
100 0.91 0.94 0.94 0.94 0.92 0.93 0.94 0.95 0.91 0.92 0.95 0.95
200 0.93 0.95 0.96 0.98 0.93 0.96 0.97 0.96 0.92 0.96 0.97 0.97
500 0.93 0.97 0.97 0.97 0.93 0.95 0.97 0.97 0.91 0.97 0.97 0.97

Note: Entries are coverage probabilities of 95% confidence intervals for β20, β20+δ20, and δ20 with and without a

small sample adjustment of the LRV estimator. Data are generated from (18) with γ0 (s) = sin(s)/2, where the

dependence structure is given in (19) with ρ = 0.5 and m = 3. The results are based on 1000 simulations.

Figure S.1: The Average of the Threshold Estimates and Kernel Density of Coeffi cient Estimates

Note: The left panel depicts the average of γ̂(s) and the right panel depicts the kernel density of δ̂2−δ20 from

1000 simulations. Data are generated from (18) with γ0 (s) = sin(s)/2, where the dependence structure is given in

(19) with ρ = 0.5 and m = 3.

41



References

Berbee, H. (1987): “Convergence Rates in the Strong Law for Bounded Mixing Sequences,”
Probability Theory and Related Fields, 74(2), 255—270.

Carbon, M., L. T. Tran, and B. Wu (1997): “Kernel Density Estimation for Random Fields,”
Statistics and Probability Letters, 36(2), 115—125.

Carbon, M., C. Francq, and L. T. Tran (2007): “Kernel Regression Estimation for Random
Fields,”Journal of Statistical Planning and Inference, 137(3), 778—798.

Davidson, J. (1994): Stochastic Limit Theory, Oxford University Press.

Gao, J., Z. Lu, and D. Tjøstheim (2008): “Moment Inequalities for Spatial Processes,”
Statistics & Probability Letters, 78(6), 687—697.

Hansen, B. E. (2000): “Sample Splitting and Threshold Estimation,” Econometrica, 68(3),
575—603.

Jenish, N. and I. R. Prucha (2009): “Central Limit Theorems and Uniform Laws of Large
Numbers for Arrays of Random Fields,”Journal of Econometrics, 150(1), 86—98.

Rio, E. (1995): “The Functional Law of the Iterated Logarithm for Stationary Strongly Mixing
Sequences,”Annals of Probability, 23(3), 1188—1203.

Tran, L. T. (1990): “Kernel Density Estimation on Random Fields,”Journal of Multivariate
Analysis, 34(1), 37-53.

Valenzuela-Domínguez, E., J. T. N. Krebs, and J. E. Franke (2017): “A Bernstein
Inequality for Spatial Lattice Processes,”Working Paper.

van der Vaart, A. W. and J. A. Wellner (1996): Weak Convergence and Empirical
Processes with Applications to Statistics, Springer.

42


