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In Section S.1, this appendix contains the omitted proofs of technical lemmas used
in the proofs of the main theorems. In Section S.2, it presents additional simulation
results.

S.1 Omitted Proofs of Lemmas

Proof of Lemma For expositional simplicity, we present the case of scalar x;. Let g be
an integer satisfying n(?+¥)/2+20)p /9 < G < n(2+9)/2+20)p 5. Such a choice always exists
since we assume n(+9)/+20)p o5 > 1. Consider a fine enough grid over [v1,71 + @] such that
Yy =71+(g—1)w/gfor g =1,...,9+1, where maxi<y<g (v, — 74-1) < @/g. We define Hy (s) =
(nby) ! Y ien, lTiuiKi(s) 1 [vg < g < 'ng] | for 1 < g <g. Then for any v € ['yg,’yg+1],

| T (7:8) = Jn (V43 8)| < /b [Hyg(s) — B [Hg(5)]] + v/nbnlB [Hng (s)]

and hence

sup | Jn (758) = Jn (713 8)|

v€lv1,71+]
< _ .
< dnax |Ju (748) = Jn (71;9)| + max v/nby |Hug(s) = B [Hug(s)] + max /nbE [H

= \Ifl( ) + \112(8) + \Ifg(s).

We let hi(s) = zu K; (s) 1 hgl <q < 'ng] for any given 1 < g1 < go < g and for fixed s € Sp.
First, for Wy (s), we study
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= ‘1111(5) + \1112(5) + \1’13(5) + \1’14(5) + \1’15(5),

where each term’s bound is obtained as follows.
For Uyi(s): From Lemma below, we have b,'E [h{(s)] < Clv,, — 74| for C < oo.
Therefore,

C
Uii(s) < hgz 7g1| = } (’Ygz - 791)2 <G (792 - 791)2

nbr, ‘792 —Tq



for some C < oo with sufficiently large n, where the last inequality is because
|792 - ’791‘ < |92 - gl| (w/§> =0 ((n(2+@)/(2+2¢)bn)_1) (B'l)

by construction and hence nby|y,, — 74| = O(n¥/2+2¢)) grows with n.
For Wi5(s): Note that

n2b2 > |Cov [1}(s), b (s)]] (B-2)
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for some Cy, CY, CY, CY' < 00, where ineq.[1] is by the covariance inequality with p, = 2+,
Gz = 2+ ¢, 1o = (24 ¢)/p, and k, = I, = 1; ineq.[2] follows by dividing the observations
according to A (4, j); ineq.[3] follows from that ;. 1(A(%, 7)) < aq,1(m) for A(¢,j) € [m,m + 1) and
{j € Ap: A(4,7) € [m,m+1)} = O(m) for any given ¢ € A,, as in Lemma A.1.(iii) of Jenish and
Prucha| (2009); ineq.[4] is by Lemma [B.1} ineq.[5] follows from Y o°_ mexp (—mep/(2 + ¢)) < 00
for ¢ > 0; and ineq.[6] follows from that |g2 — g1|2/(2+“0) < (g2 — g1)? and nbﬁ?”“ﬁ)/(ﬂw)hm -
Vg, | G20/ 2H0) = O (1) from . Furthermore, by Lemma we have b, 'E [k (s)] < Clv,,—
Y4, | and thus Assumptions A-(iii), (v), and (x) yield that

Upa(s) < n21b2 Z (B [h7(s)] B [R3(s)] + |Cov [hi(s),h3(s)]]) (B.3)
1
< (+—E[r3(s)] Cov [k (s ( )
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< (02 + C”/) (’Ygz B ’791)2

from (B.2).
For Wy3(s): Since E [h;(s)] = 0, using the same argument as (B.2)) and (B.3)), and the inequality
(A1) withp, =22+¢) /3, ¢ =22+ ), r2 = 2+ ¢)/p, and k; = [, = 1, we can also show



that
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for C5,C4, CY, CY < o0.
For Wis(s): Let € = {(i,j, k1) :i £ j £k £ 1,1 < \i,§) < A\(i,k) < A4, 1), and A(j, k) <
(7, l)}E Then by stationarity,
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= Wig1(s) + Via2(s) + Pia,3(s).

In Wy41(s), note that the largest distance among all the pairs is A (z, 7). Then, similarly, by the
covariance inequality (A.1l) with p, =22+ ¢)/3, ¢z =22+ ), 1o = 2+ ¢)/p, ks = 1, and
Iy = 3,
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"1n the (one-dimensional) time series case, this set of indices reduces to {(i,,k,1): 1 <i<j <k <l <n}.
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as in (B.2) for Cy, C}, CY,CY' < oo since |{k € Ay, : A (4,k) < m}| = O(m?) for any given j € A,,.
Note that the second inequality above is from
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by the Holder’s inequality and stationarity. In Wi42(s), the largest distance among all the pairs
is A (4, k). Similarly as above, therefore,
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for Cs5,C5, CY,CY' < co. In W143(s), the largest distance among all the pairs is still A (4,k). We
define an increasmg sequence of integers r, such that x2 = O(n(2+“’)/ (2+29")). We decompose
\1’1473((9) into

4!
Viag(s) = > B (1), (5)] B [ () (5)]
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n i,j,k,lEALNE
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A(4,7) <kn,A(k1)>Kn

1 2 3
= W 5(s) + WY 5(s) + U500,
For \11[113(3), since E [|zjuxju |, qj, si,85] < C¢ < oo from Assumption A-(vii), we can show
that

1
EE [hi(s)h;(s)]
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,
@ / / / k K (t') £ (0.5 + tha, s + t'by) dgdg'dtdt’ (B.4)
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for some constant C§ < oo when n is sufficiently large, using a similar argument in the proof of
Lemma Hence, from the fact that |[{j € A, : A (i,]) < kn }| = O(k2) for any fixed i € A,,, we
obtain

Cl/
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for some Cf, C{',Cy < 00, because rib2(v,, — V,,)? = O((k2n~(+9)/(2+20))2) = O(1) from the

construction of k. For \11[124]’3(3), since [ [hi(s)h;(s)] = Cov[hi(s), hj(s)], the covariance inequality

(A.1) and Lemma yield that
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for C7,C%, C7, CY' < 0o. Note that for any a > 0, we have

e}

Z mexp(—am)g/ texp (—at)dt =

m=~rn+1 kn

It follows that
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for C%,C3*, C¥** < o0, because b?f’/(ﬂw)hm — 74, [/CH9) = O(n?#/(2+29)) and the exponential

term decays faster than the (potentially) growing polynomial term. For \If[l?i?)(s), by combining

the arguments for bounding \11[113(8) and \11[121273(3), we also obtain that
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for some Cy, Cg < o0.
For Wi5(s): Let & = {(4,75,k) :i#j # k and 1 < A(4,7) < A(i, k)} and decompose it into

2 2
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2
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= Ui51(5) + ¥is2(s) + Pis3(s).
Similarly as Wi41(s),
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for Cy, C§,Cy,Cy' < o0 and the same argument implies that Wi52(s) = O((7,, — 7,,)?) as well,
For W5 3(s), similarly as Wi43(s), we have

2
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for Cho, C1g, C1p: C1py < 0.
By combining all the results from Wq1(s) to W15(s), we thus have

B (|9 (7gs:5) = I (10259)*] <€ (105 =701)" < C llg2 — g1 (/5))?

for C < oo, and hence Theorem 12.2 of [Billingsley| (1968) yields that there exists C’ < oo such
that

C'w?
p—y . — . <
P(¥i(s) >n) =P <2§I§1§;<+1 | Tn (743 8) = Jn (715 8)] > 77> < (B.5)
for n > 0 as in the proof of Lemma A.3 in |[Hansen| (2000).
Next, for Wa(s), for all g=1,...,g and C' < 00, Lemmabelow shows that
47 _
B | (Vb [Hog(6) ~ B Hg(9)]) | < €' /9)
Hence, by Markov inequality,
76”@2/?2 E//WQ
P (s b [Hog(s) ~ B (0] ) <55 < €7 (B.6)



where the last inequality uses (w/g) < w.
Finally, for U3(s), Lemma gives

Vb B [Hyg(s)] = /nb, x b,'E [|ziuil ['y <q < 'ng] K (s)|] (B.7)
< VbaClrgin =] < n(2+‘f’ f@v2ay, ~ ey,

if there exists a constant C** such that n > C**( 1/(1“") bn)~/2. So the proof is complete by
combining (B.5), (B.6), and (B.7), where C*=C +C . B

The following two lemmas are used in proving Lemma above.

Lemma B.1 b, E [|hi(s)[*] < C vy, — 74| for £ <2(2+¢) and C < cc.

Proof of Lemma We have E [|zu;|‘|gi, s;] < C1 < oo from Assumption A-(v). Hence, by
Assumptions A-(vii) and (x), Taylor expansion yields

1 1 —
EE [|hi(s)ﬂ = bn//E {|xiui|glq,v] 17y, <a<7,) K* <vbns> f(g,v) dqdv
< O //1 (Vo <0< 7g,) K (t) £ (g, 5 + bnt) dgdt

= Cl/Kg (t)/l (Vo1 <@ < 7g,) {f (@, 8) + O(bnt + b2t%) } dadt

< Ci }792 - 791‘

for some constants C1, C] < co when n is sufficiently large, where we apply the change of variables
t = (v—15)/bn. Note that [ K*(t)dt < oo and [1[vy, <q<,]f (g s)dg= f(s)P(yy <@ <
Ygol5i = 5) = O(|vg, — v 1) DY the mean-value theorem, where f; (s) < oo is the marginal density
of 5; and |vg, — vy, | < lg2 — g1lw/7 = ()(71(2+"9)/(2+2‘F’)bn)_1 = 0(1) because n?+¥)/2+20)p
nt/(4)p, — 0o as n — oo from Assumption A-(ix). W

Lemma B.2 E[(v/nby, |Hpy(s) — E[Hu,(s)])4] < C(w/g)? for allg=1,...,§ and C < oo.

Proof of Lemma Recall Hpg(s) = (nbn) ™1 > icp, |hig(s)], where hig(s) = ziuiK; (s) 1[y, <
¢ < Vg+1]- We decompose

B | (Vi [Hi(s) ~ B [Hy o)) | B
4
- ﬁE (Z (i <s>\—Eum~g<s>u>>
n i€A
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e, j;iA ]SéA
* 21b2 > E[mi(s)n; (s)me(s)m <s>}+n§bz‘,2 E [0 (s)n; (s)mx (5)]
Yt iy



where we define 7;(s) = |hig (s)| —E [|hig(s)|]. However, E[n;(s)] = 0 by construction, E[[n;(s)|"] <
E[|hig(s)|"] for any r > 1, and E[|n;(s)n;(s)|] < E[|hig (s) hjg (s)|]. It follows that, using the same
arguments respectively in Lemma (B.2)), and (B.4)), we obtain

SB[ < 5B (b6l < 1 hrgen =

nzbz > [Cov[F().mf ] < Co (g1 =)’

1,JEA,
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IN

B [y 6)] < 5Bl () by ()] < s (3901~ 7,)°

n

for sufficiently large n and for some C1,Cy,C3 < oo. Therefore, we can find the bounds of the
five terms in as we obtain for Wi (s) in the proof of Lemma by replacing (g1, g2) by
(9,9 +1) for k =1,...,5, from the facts that |y,.; —v,| = @/g. Note that a similar moment
inequality for spatial a-mixing processes can be also found in Gao, Lu, and Tjgstheim (2008). H

Proof of Lemma For a fixed v, the Theorem of Bolthausen (1982) implies that J,, (7; s) —4
J (7; s) as n — oo under Assumption A-(iii). Because 7 is in the indicator function, such pointwise
convergence in y can be generalized into any finite collection of 7 to yield the finite dimensional

convergence in distribution. Then the weak convergence follows from Lemma above and
Theorem 15.5 of Billingsley| (1968)). W

Proof of Lemmal[A.3] We prove the convergence of M, (v; s). For J,, (v; s), since E [u;z;|g;, si] =
0, the proof is identical as M, (7;s) and hence omitted. For expositional simplicity, we present
the case of scalar x;.

By stationarity, Assumptions A-(vii), (x), and Taylor expansion, we have

// [27]q,v]1[q < 4K <b )f(q,’l))dqdv (B.9)

- / D(q.5 + bat)Llg < AK (£) f (g, 5 + but) dadt

E [My, (7; s)]

= My 8)+bi/ﬂ7(q; s)1[q S’Y]dq/tZK(t) dt,

where M(q;s) = D(q,s)f (q,s) + (D(q,s) + f(q,5))/2. We let D and f denote the partial
derivativefsl and D and f denote the second-order partial derivatives with respect to s. Since
SUDPges, || M (g;5) || < oo for any ¢ from Assumption A-(vii), and K (-) is a second-order kernel,
we have

sup  ||[E[M, (v;s)] — M (v;8)|| = Op (b2) = 0p(1). (B.10)

(7,8)€T'xSo
Next, we let 7, = (nlogn)/4+2%¥) and ¢ > 0 be given in Assumption A-(v). By Markov’s and
Holder’s inequalities, Assumption A-(v) gives P (22 > 7,,) < CT;(4+2¢)EHZE%‘2(2+¢)] < O’ (nlogn)™*
for some C,C’ < oo. Thus

Z P (l’i >7y) <C' Z (nlogn)™! < oo,

nez? nez?



which yields that z2 < 7,, almost surely for sufficiently large n by the Borel-Cantelli lemma. Since
Tp — 00 as n — 00, we have x? < 7, for any i € A,, and hence

sup  [[Mn(vi8) — My (v;8)[| =0 and  sup  [[E[My(y;s)] — E[M;(v;s)][| =0
(7,8)€T xS0 (77,8)€l'xSo

almost surely for sufficiently large n, where

T 1 2 2
M (v;s) = n—bn Z i1 () Ki(s)1 {ZL‘Z < Tn} . (B.11)
€A,
It follows that
sup  [|Mu(v;8) —E[Mu(v; )]l < sup  [[Mn(yss) — M (7;8)|l (B.12)
(W,S)EFXSO (’Y,S)GFXSO
+  sup  |[[My(v;s) — E[My(v;s)]ll
(7,5)€l'xSo
+  sup |[E[My(y;s)] — E[M;(v; s)]l
(775)61—‘)(30

and we establish sup(, gcrxs, [|Mn(7;8) — E[Mn(7;8)]l]l = op(1) if the second term in (B.12) is
B

0p(1). Then we conclude sup(, g)erxs, [|Mn (7;8) = M (75 8)|| —p 0 as desired by combining (|

and (B.12).

To this end, we let m,, be an integer such that m, = O(r,(n/(b3logn))'/?) and we cover
the compact I' X Sy by m?2 squares centered at (7, ,sk,), defined as I, = {(+/,s) : |[¥/ —
Vi,| < C/my and |8’ — sp,| < C/my} for some C < oo. Note that 7,(n/(b3 logn))¥/? =
Tn (n'72%, / log n) 1/2 (n%/bl) 2 oo as n — oo from Assumption A-(xi), hence m, — oc.
We then have

sup [[My(v;s) = BIMg(y;o)lll < max  sup [[M;(y;s) — B[Mg(y; )]l

(7,5)€T'xSo }é’g;ém (7,8)ETy
< max  sup  ||M](v:8) — M (Ve Sk ||

1<ko<mn, (’sz)e k

+ max sup |E[M](v;9)] —E [M] (Vg Sks)
i?ﬁé%ﬂﬂms)e%” " 7ol

+, Joax [ M (Viys 812) = B [ M (Va5 50|
1<ko<my,

= U+ Ypo+ Ypys.

We first decompose M7 (75 s) — My (g3 Sky) < M, (7, Viys Ska) + M3, (75 8, 5k, ), where

1
M, (Vs Vi k) = o S af g <9 - 1[a < v, )| Ki(si)1 (27 < 7],
" icAn
1
Mz (Vi 8,80) = - > @i <A)|Ki(s) = Ki(se,)| 1 [27 < 7] -
" ieh,

Since K;(-) is bounded from Assumption A-(x) and we only consider z? < 7,, for any 7 such that

10



|ry - 7]{,‘1‘ S C/mTH

1M, (s k)| < CLoe e "~ > " 1 [min{yy,, 7} < ¢ < max{y;,,7}] (B.13)
1€EAn
< C17yb,'P (min{vyy,, v} < ¢ < max{y,,,7}) (1 + 04.5.(1))
< Cirpbyimy Y1 4 04.6.(1))

b, logn 1/2
= C{’( " ) (14 045.(1))

B logn 1/2
N(CS

for some C4,C},CY < oo, where the second equality is by the uniform almost sure law of large
numbers for random fields (e.g., |Jenish and Prucha (2009), Theorem 2). This bound holds uni-
formly in (v, s) € Zj, and k1, k2 € {1,...,m,}. Similarly, since K(-) is Lipschitz from Assumption
A_(X)v

HMgn(77 S, 3k2)H

IN

Z | Ki(s) = Ki(sg,)| (B.14)

" ieAn

Tn Chr, logn 1/2
< O2b2|3_5k2|§b22m:Oa.s.(<nb )

for some Cy, C < 0o, uniformly in ~, s, k; and k. It follows that

HM;('YS 5) — M;(’Yk:l; Skz)H = Oq.s.((log n/(nbn))l/Q)

uniformly in ~, s, k1 and k3, and hence we can readily verify that both Wy and Wy are
O, ((logn/(nb,))'/?). For Wyrs, we follow the same argument for bounding the @, term
on pp.794-796 of |Carbon, Francq, and Tran (2007). In particular, for any k1 € {1,...,m,},
maxi<iy<m, || My (Ve,i k) — B [M7 (Va5 56.)] || < Cs (logn/(nby)) /2 as. for some C3 < oo.
Note that v, shows up in the indicator function 1 [qz < 'ykl] only, which is uniformly bounded
by 1. The bound is hence uniform over all k; € {1,...,my} and Wy3 = O ((logn/(nby,))'/?)
as well. We have sup(, gcrxs, | My (7; s) — E[Mg (7; 8)]|| = 04.5.(1) by combining the bounds for
U1, Uare, and Wys3. We thus complete the proof because logn/(nb,) — 0 from Assumption
A-(ix). &

Proof of Lemma For expositional simplicity, we present the case of scalar x;. Similarly

as , we have
E[AM, (s)] (B.15)

— [[P@s+b o<+t -1l < <s>]}K<t>dth

Yo(s+bnt)
= / / D(q, s + byt) K (t)dqdt + / / D(q, s + b,t) K (t)dgdt
’T+ () Jo( T—(s) Jvo(s+bnt)

S MS
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where D(q, s + bpt) = D(q,s + but) f(q, s + byt) and we define 71 (s) = {t : vo(s) < vy (s +bnt)}
and 7 (s) = {t : 7(s) > Y9 (s+but)}. We consider three cases of y(s) = 9y, (s) /Is > 0,
Fo(s) < 0, and “4(s) = 0 separately, which are well-defined from Assumption A- (Vl).

First, we suppose 74(s) > 0. We choose a positive sequence ¢, — oo such that t,b, — 0
as n — oo. It follows that for any fixed ¢ > 0, ¢,b, < ¢ if n is sufficiently large and hence
TH(s)N{t: |t| < tn} = [0,¢,] since ¥, (-) is continuous. Furthermore, the mean value theorem
gives

Yo (s+bnt)
/ D, + bat)dq = butD(g (), s)¥o () + O (b2) &2, (B.16)
Yo(s)

where |D(’yo (s),8)¥ (s)| < oo from Assumptions A-(vi) and (vii). Therefore,
(B.17)

tn 70(5+bnt 70(5+bnt)
/ / D(g, 5+ byt) K (£)dqdt + / / D(g. 5+ byl) K (t)dqdt
Yo(s) TH(s)n{t:|t|>tn} Svo(s)
tn ()
= {an(’yO (s),5)% (3)/ tK(t)dtJrO(bi)} +0 <bn/ tK(t)dt)
0 tn

= 5D () 5o o) [ THE(dt+0(b).

where the second equality is because 7 (s) N {t: |t| > t,} C (tn,00) and

Yo(s+bnt)
/ / D(q, s + byt) K (t)dqdt
T+(s)n{t:|t|>tn} Jyo(s)

from (B.16) as 7+(s) N {t : [t| > tn} C (tn,00). Ast, — oo, note that [} tK(t)dt — 1/2 and
Assumption A-(x) implies K (t)t~(2*") — 0 for some 1 > 0 as t — oo and hence j;io tK(t)dt — 0.
Similarly, 7~ (s) N {t : |t| < t,} = [~tn, 0] and thus

< bn [D(70 (5), 8)0 (s I/ (t)dt + O(b7)

0 Yo(s)
U (s) — / / D(g, 5+ byt) K (£)dqdt + 0 (by)

—tn Jyo(s+bnt)
0
= 5D (5) 80 (5) / (K (8)dt + 0 (by)

which yields B [AM, (s)] = ¥}, (s) + Uy, (s) = baD(70 (5), ) () + 0 (bn) because [;° tK (t)dt —
ffoo tK(t)dt = 1. When 7,(s) < 0, we have T+ (s)N{t: |t| <t} = [~tn, 0] and T (s)N{t: |t| <
tn} = [0,t,]. Therefore, we can symmetrically show that E[AM, (s)] = —b,D(vo (3),8)Yo (s) +
o (bn).

Second, we suppose ¥,(s) = 0 and s is the local minimizer. Then, 7% (s)N{t: |t| <t,} = {t:
t] < tn} and hence

(B.18)
Yo (s+bnt)

Yo 3+bnt)
= / / D(q, s + byt)K(t)dgdt + / / D(q, s + bnt) K (t)dqdt
TH(s)n{t:[t1>tn} Jv0(s)

- o) /t 2K (t)dt + o(b?)

12



= O(b2)

from , where [T} " RK(t)dt — [Z K (t)dt < oo as t, — oo from Assumptions A-(x).
Note that the second equahty is because

Yo (s+bnt)
/ / D(q, s + bpt) K (t)dgdt = O bi/ K (t)dt | =0 (b2),
TH()N{E:le>tn} /vo(s) [t1>tn

where T (s) N {t : |[t| > t,} C {t:|t| > t,} and f|
T~ (s)NA{t:|t| < t,} becomes empty and hence

H>tn K(t)dt — 0 as t, — oo. However,

Yo(s)
/ ’ D(q, s + byt) K (t)dgdt = o(b?).
Yo(s+bnt)

Uy, (s) :o+/

T ()N {t:|t|>tn}
When 4, (s) = 0 and s is the local maximizer, we can symmetrically show that

Yo (s+bnt)

Ui(s)=0+ / / D(q, s + byt) K (t)dgdt = o(b?)
TH()N{t:[t>tn} S0 (s)

and
/ / D(g, 5 + but) K (£)dgdt + o(b2) = O(B2).
70(3+bn

By combining these results, we have E[AM, (s)] = b,D(vo(s), )|V (s)| + o(by) for a given
s € 8y, and hence

Sup E[AM, (s)] = O(bn)

since supges, D(70 (8) ,5)|Y0 (8) | < 0o from Assumptions A-(vi) and (vii).

The desired result then follows if supcg, [|AM;, (s) — B[AM, (s)]|| = o(b,) almost surely,
which can be shown as Theorem 2.2 in Carbon, Francq, and Tran (2007) (see also Section 3 in
Tran (1990) and Section 5 in Carbon, Tran, and Wu (1997)). Similarly as the proof of in
Lemma we let 7, = (nlog n)l/(4+2@) and define

AM (s) = b ZazAsZ, Ki(s)1,,

as in , where A;(si, s) = 1; (79 (i) —1i (70 (s)) and 1, = 1 {22 < 7,,}. We also let m,, be
an integer such that m,, = O(7,n'72¢/b2), which diverges as n — 0o, and we cover the compact
So by m,, intervals centered at si, which are defined as 7, = {s' : |¢' — si| < C/my} for some
C < 0. Then,

sup [|AM; (s) —B[MAL(s)] < max sup [AM;(s) — AM; (s

5680 1<k<mn SEIk
+ max sup [|[E[AM; (s)] — E[AM, (sg)]||
< <mn SEIk;
+, max |AM; (s) — E[AM (sk)]||

= Uanmi+Panmz+ VYans.
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However,

[AM;(s) — AM; (si)|| < b >} [Ai(si, 8) — Ai(siy si)| Ki(se)1s
1€AR

bZZ\A si» )| [ Ki(s) = Ki(sg)| 1r,

1€AL
= 72 7 |Li (0 (sk)) — Li (79 (5))| Ki(sp) 1+
zeA
Z 23 |15 (7o (s1)) — 1i (70 ()| [ Ki(s) — Ki(s1)| 17,
" i€y

Tn 1
= Ogs. (b%n’m) = 0Og.s. <nl—25>

as in (B.13)) and (B.14), and hence a1 = Yano = 045 (bn) as n'=2, — oco. We also have
UAN3 = 04.5.(by) as proved belowB which completes the proof. B

Proof of Yans = 04.5.(bn):  We let
Z7(5) = (nba) ™ { (60 )2 Ai(s15) K (5) 1, — Bl(eg )2 Au(s, 5) K () 17, ]}

and apply the blocking technique as in Carbon, Francq, and Tran (2007), p.788. For ¢ = (i1,1i2) €
A, C R?, let n; and ny are the numbers of grids in two dimensions, then |An| = n = nina.
Without loss of generality, we assume ny = 2wry for £ = 1,2, where w and r, are constants to be
specified later. For j = (j1, j2), define

@2h+w  (2j2+l)w
ulGss) = ) > Zis), (B.19)
11=2j1w+1i2=2j2w+1
(2j14+1)w 2(jo+1)w
UPlGGis) = > > Z(s),
11=2j1w+1ix=(2j2+1)w+1
2(i+Dw  (2j2+l)w
UBl(j;s) = > > Zis),
11=(2j1+1)w+1 i2=2j2w+1
2(j1+1)w 2(jo+1)w
Ut(j;s) = > > Zs),
i11=(2j1+1)w+1i2=(2j2+1)w+1
and define four blocks as
ri—1lrg—1

= > Y UM(s) for h=1,2,34,

71=0 7j2=0

12Unlike the Lemma We cannot directly use the results for @3, in Carbon, Francq, and Tran (2007) here.
This is because O((logn/(nb,))'/?) is not necassarily o(b,) without further restrictions.
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so that D ,cx Z](s) = Sr_ B (s) and WAz = maxi<p<pm, ‘Zi:l B[h}(sk)‘. Since these four
blocks have the same number of summands, it suffices to show maxj<g<m,, ‘B[l](sk)‘ = 04.5.(bp).
To this end, we show that for some &,, = o(by,),

B[l](sk)‘ > €n> < %IP’ (‘B[l](sk)’ > sn) (B.20)

k=1

P max
1<k<mn,

< my, Ssgg)]? (‘Bm(s)‘ > £n>

= 0O(n™°)

for some ¢ > 1 and hence > 7, P (maxlgkgmn }Bm(sk)‘ > €n) < o0o. Then the almost sure
convergence is obtained by the Borel-Cantelli lemma.

For any s € Sy, BlU(s) is the sum of r = rry = n/ (2w?) of UM(j;s)’s. In addition, UM (j; s)
is measurable with the o-field generated by Z7 (s) with i belonging to the set

{i=(i1,02) : 2jew + 1 <dp < (2 + Dw for £ =1,2}.

These sets are separated by a distance of at least w. We enumerate the random variables U (45 8)
and the corresponding o-fields with which they are measurable in an arbitrary manner, and refer
to those UM (j; 5)’s as Uy (s), Ua(s), ..., Ur(s). By the uniform almost sure law of large numbers in
random fields (e.g., Theorem 2 in Jenish and Prucha (2009)) and the fact that B [K; (s) b,'] < C,
we have that for any t =1,...,r and s € S,

Cw?r 1 (2j1+D)w  (2j2+1)w
Ul < T ST YT A K (s) (B.21)
nzl =271w+1 i9=2j55w—+1
2i+Dw  (2j2+D)w
Cwr 1 B
< GO (LSS ko
11=2J1w+1i2=2j2w+1
< C'w?r,,
- n

almost surely for some C,C’ < oo. From Lemma 3.6 in Carbon, Francq, and Tran (2007), we
can approx1mate{§| {U:(s)};—; by another sequence of random variables {U;"(s)},_; that satisfies
(i) elements of {U;(s)};_, are independent, (ii) U;(s) has the same distribution as Us(s) for all
t=1,...,r, and (iii)

S E(U;(s) = Ugls)|] < rC"n ' mron2 e (w) (B.22)

for some C” < oo. Recall that a2 ,2(w) is the a-mixing coefficient defined in . Then, it
follows that

P(BN( ><P<Z]Ut )]>€n>+]P’<ZUt

t=1

> €n> (B.23)

"3 This approximation is reminiscient of the Berbee’s lemma (Berbee (1987)) and is based on Rio (1995), who
studies the time series case. It can also be found as Lemma 4.5 in Carbon, Tran, and Wu (1997).
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for any given s € Sp, and hence in view of (B.20) and (B.23)

P max
1<k<mn

B[”(sk)‘ > 5n> < mysup P (Z U (s) — Uy(s)] > gn>

SESO =1

+m,, sup P Z Ui (s)| > en
s€Sy —
= Py + Py (B.24)

First, we let €, = O((logn/n)'/?). By Markov’s inequality, (B.22), and Assumption A-(iii),
we have

rC"n M T a2 2 (W)

P < my -
< © n!=2¢ (nlog n)l/(4+2“") _ (nlog n)l/(4+2“0) exp(—Cin1)
= b2 (logn/n)1/2
< Crexp(—Clne) (Jogn )" _n™
>~ 1 €Xp 1 nlfgebn (10g n)ﬁg

for some k1, kg, k3 > 0 and C1,C} < oo. Recall that we chose m,, = O(r,n'=2%¢/b2), n = dw?r,
and 7, = (nlogn)/“*2?) Hence Py; — 0 as n — oo, since logn/(n'~2b,) — 0 and the
exponential term in the last inequality diminishes faster than the polynomial order.

Second, we now choose an integer w such that

w = (1) (Cuman))?,

A = (nlogn)'/?
for some large positive constant C',. Note that, substituting A,, and 7, into w gives

n(1+9)/42+e)
w = O )
(log n) B+9)/4(2+¢)

which diverges as n — oo for ¢ > 0. Since U/ (s) has the same distribution as U;(s), |U/(s)| is
also uniformly bounded by C'n~'r,w? almost surely for all t = 1,...,r from (B.21)). Therefore,

I\ U ()| < 1/2 for all t if C,, is chosen to be large enough. Using the inequality exp(v) < 14+v+v?
for [v| < 1/2, we have exp(\,U;(s)) < 14+ A\ U (s) + A2U;(s)%. Hence

Elexp(AU; (s))] < 14 A2E [Uf(s)?] < exp (A2E [Uf(s)?]) (B.25)

since E [U(s)] = 0 and 14+v < exp(v) for v > 0. Using the fact that P(X > ¢) < E[exp(Xa)]/ exp(ac)
for any random variable X and nonrandom constants a and ¢, and that {U;(s)};_; are indepen-

P ( ET:U;‘(S) > €n>
t=1
= P (Z MU (s) > Ansn> +P ( > Ui (s) > )\nen)
t=1 t=1

dent, we have
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E [exp <)\n Z;l Ut*(s)ﬂ +E [exp (—/\n Z::1 U{‘(s))]

<

exp()‘nen)
,
< 2exp(—Anen) €xp ()\% ZE [Ut*(3)2]> (B.26)
t=1
by (B.25). However, using the same argument as in (B.15)) above, we can show that
* CQU)Z
E[U(s)?] < > EB[Z(s)]+ > Cov[Z](s).Z](s)] < o
1<ii<w i#]
1<i9<w 1<iy ig<w
1<j1,j2<w

for some Cy < 0o, which does not depend on s given Assumptions A-(v) and (x). It follows that
(IB.26|) satisfies

T
2 Ui

t=1

(B.27)

Co\2rw?
n2

sup P ( > €n> < 2exp (—)\nsn +
s€Sp

= 2exp (—)\n&?n + C’g)\in_l) .
Recall that we chose €, = O((logn/n)'/?), hence there exists C* > 0 such that ¢, = C*\ logn

and
—Anén + CoX2n~ ! = —C*logn + Calogn = — (C* — C3) log n.

Therefore, in view of (B.27]), we have

.
Py = mpsupP Z Ul > en
s€Sp —1
2m,  2n'7%* (nlog n)l/(4+2‘p) <C logn \2 1
— nC*—Cz - nC*—Cz b% =3 nl—ern (log n)’% nks

for some C3 < 00, kg =2—(1/(4+2p)) > 2, and ks = (C* — Ca) —3(1 —2¢) — (1/ (4 +2¢)) > 1
by choosing C* sufficiently large (e.g., C* > Co + 17/4). Since logn/(n'=2b,) — 0, we have
Pys < O(n™%) — 0 as n — oo. Therefore, the desired result follows since ¢, = O((logn/n)/?) =
o(by,) from Assumption A-(ix) and Pyy + Pya = O(n™¢) for some ¢ > 1.

Proof of Lemma [A.6| For a given s € Sy, we first show (A.12). We consider the case with
7(s) > 7y(s), and the other direction can be shown symmetrically. Since ¢] D(,s)cof (-, s) is
continuous at ,(s) and ¢j D(v(s),8)cof (79(s),8) > 0 from Assumptions A-(vii) and (viii),
there exists a sufficiently small C(s) > 0 such that

tp(s) = inf ¢ D(y(s),8)eof (4(s), ) > 0. (B.28)

17(5)=70(s)I<C(s)

By the mean value expansion and the fact that T}, (v; s) = ¢g (M, (7(s); 8) — My, (74(5); 8))co, we
have

(s)
E [Tn (7; 3)] = //W( ) E |:<C(—|)—-’BZ)2 ’qv s+ bnt:| f(Q7 s+ bnt)K (t) dqdt
Yols

= (7(s) =70(8) cg D((s), 5)eof (7(s), )
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for some ¥(s) € (vo(s),7(s)), which yields

BT, (v;8)] 2 (v (s) =70 (s)) £p(s)- (B.29)

Furthermore, if we let A;(v;s) = 1; (v (s)) — Li (79 (s)) and Z,(s) = (chi)QAi('y;s)Ki (s) —
E[(C(—)r:l?i)2 A;i(vy; 8)K; (s)], using a similar argument as 1} we have

E [(T (755) ~ BTy (3 )))?] (B.30)
= 2b2 ZE + 21b2 Z Cov[Z,,i(8), Zn,j(s)]
" ieAn TG GEMN, i#]
C1 (s)

<

Tbn (v (8) =70 (s)

for some C(s) < 0.
We suppose n is large enough so that 7(s)¢;,, < C(s). Similarly as Lemma A.7 in Hansen
(2000), we set v, for g = 1,...,g + 1 such that, for any s € So, v, (s) = 7o (s) + 297'7(s)¢y,,,

where g is an integer satisfying 75 (s) — o (s) = 29717(s) ¢y, < C(s) and v5,4 (s) =70 (s) > C(s).
Then Markov’s inequality and (B.30)) yield that for any fixed 7(s) > 0,

Ty (743 )

4 m > 77(5)) (B.31)
Tn (’Yg’ s) — B [T, 5’79’5)}

B [T, (7,) W@
E|(T (v5:5) B [T (v5:9)])’]
! BT (79:9)]

7 (8) =70 (5))
$)) £p(s)[*

-1

IA
=
S
AE
A%

IN

3

[

—~~| =
»

~ |
= &

IA
—_

Q

—

— |~
»
~
|
S

S

3
~
—_

—~ |

IN
—_
[\
LS
—~
»
~—
—~
S
S
S
~
L

<

< g(s)
which can be arbitrarily small with large enough n. From eq. (33) of [Hansen| (2000)), for any
7 (s) such that 7(s)¢y,, <7 (s5) — 7, (s) < C(s), there exists some g* satisfying Vg (s) —vp(s) <
7 (8) =70 (8) <¥gey1(8) =70 (s), and then

T(is) o Talygeis)  B[Tn(yg59)]
V() =) T BT (vg59)] g (5) =70 (9)]

{menmal}mme
1<9<7 | E [Ty (74 5)] Yges1 (8) =70 (5)]

(B.32)

Y]
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[+ (8) =70 (5)] £n(s)
[Yge41 () =70 ()]

from (B.29), where |74+ (s) =70 (8) [€p(8)/|7g+11 (8) =70 (8) | is some finite non-zero constant by
construction. Hence, in view of (B.32)), we can find Cp(s) < oo such that

P inf  Ta(ys)
7(8)b10 <1(5)—70(5)|<C(s) [7(8) — 0 ()]

for any e(s) > 0. The proof for (A.13) is similar to that for (A.12)) and hence omitted.
We next show (A.14). For expositional simplicity, we present the case of scalar x;, and so is

Ly(v;s). Similarly as (B.30]), we have
B |La (:9)°] < C2 (5) [7(s) = 70(s)] (B.33)

for some Cy(s) < oo. By defining v, in the same way as above, Markov’s inequality and (B.33))
yields that for any fixed n(s) > 0,

]P’( Lo (743 9)] >77(5)> o 5 Pl b (B.34)

> (1=n(s))

<@@m—mm>sw>

max

12059 an (7, (5) =70 (5)) ~ 4 ) T (8) S an |y (s) — 70 (5))?
16 > CQ (S)
S O X ey o)1)

16C5 (5) o= 1
n?(s)7(s) ; 291

since a,, = qbfé. This probability is arbitrarily close to zero if 7(s) is chosen large enough. It is
worth to note that |-D provides the maximal (or sharp) rate of ¢y, as a,' because we need

an |7, (5) (s)] = (ﬁlnan = O(1) as n — oo at most, which is also valid in (B.31]).
Simﬂarly, from Lemma [A 1] we have
Ly (v;8) — Lp (7458
P | max sup [Ln (7:9) (1535)] > 1 (5) (B.35)
1050 5 (5)<1(5) <7001 (5) Vm (Tg(8) =70 (5)) ~ 4

IN

ZP( p (L0155 = L (09| > Vam (3 (5) - @)nﬁf))

)<’Y(S)<’Yg+1(5)
2
03 (8 ‘7g+1 8) - ng(S)l
4
ot (s)a2 |y, (5) =70 ()]

_Gi(s)
()()

for some C3(s), C4(s) < 0o, where v, (s) = ¢ (s)+297'7(s)¢1,,. This probability is also arbitrarily
close to zero if 7(s) is chosen large enough. Since

|Ln (7 5)]
sup (B.36)
()b <y (5)—v0 ()| <C(s) Van (V(8) =70 (5))
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Ln ; Ln ; - Ln )
< . } (79 S)‘ 19 max sup ‘ (73 5) (79 S)‘j
1<9<7 \/an (74 (8) — 70 (3)) 12959 (5)<9(5) Svgia(5) VOn (79(5) =70 (9)

(B:33) and (B33) yield

|Ln (73 8)|
P sup > (s)
(r(s>¢m<w<s>vo(s)|<o< ) Van (7(s) =70 (s))

L (743 5)] 1 (s)
= P<21<9<9 Van (7, (s )g 0(5)) ~ 2
}Ln(%S)*Ln(% )| n(s)
—HP (21@32{97(5)@81157%1 \ﬁ( ( ) g 2
< g(s)

for any e(s) > 0 if we pick 7(s) sufficiently large. B

Proof of Lemma Using the same notations in Lemma [A.5] (A.4)) yields

n (9G(5)) - 0o) (547
1~ . TS~ !
= {nbnz(y(s),s) 2(7(3)75)}
X {7;12@(5); 5)T(s) — nrgn ZG(s):9) (Z(s)i ) = Z(vols:):9)) 90}
= 0,1(5) {Oa2(s) — Oa3(s)}.
Let M(s) = [%_D(q,s)f (q,s)dq < co. For the denominator © 41(s), we have
(nbn) ' Yien, ziz] Ki(s) My (3(s); s)
Oa1(s) = " ’
a1(s) ( M, (3(s); s) M, (5(s); s) ) (B39

M (vo(s);s) M (vo(s);s)
where M (v;s) < oo is defined in (A.2), which is continuously differentiable in 7. Note that
[My (Y(s); 8) — M(Vo(S);S)l < [Mn (3(s); 8) = M (3(s); 8) [+ [M (7(s); 8) = M (79(s); ) | = 0p(1)
from Lemma and the pointwise consistency of 7(s) in Lemma In addition, we have
Z ziz) K; (s) —, M(s) from the standard kernel estimation result. Note that the
probablhty hmlt of O41(s) is positive definite since both M (s) and M (vyy(s);s) are positive
definite and

. ( M(s) M (75(s);5) )

M(s) = 3 (o(s)i5) = [ O: D097 (5.5)da >0
Yols

for any v¢(s) € I' from Assumption A-(viii).
For the numerator part © 42(s), we have O 42(s) = Op(aﬁlﬂ) = 0p(1) because

L Giis s Tae) [ (0 Sien, muki(s) ) _
——Z(3(s):s) u<s>—< P )—opu) (B.39)
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from Lemma and the pointwise consistency of 7(s) in Lemma Note that the standard
kernel estimation result gives (nb,) /23", A, Tiui K (s) = Op(1). Moreover, we have

@A3(8):( (mbn) ™ Sien, wie] co {1 (3(s)) = Li (0 (50))} Ki (5) ) (B.40)
(mbn) ™ Siea,, @i coli (7(s)) {1i (3(s)) = L (0 (s0))} K (s)

and

LS il {1 ((5) 1 (30 (s0)} Ki () (B.41)
" ieA,

leoll 1M (3(s); s) — Mu (vo(si); )
leoll £1[Mn (F(s); ) — M (7v0(s); )l + Op(bn) }
= op(1),
where the second inequality is from and the last equality is because M, (v;s) —p M (7;s)
from Lemma which is continuous in v and 5(s) — 7,(s) in Lemma Since

Z ziw] col; (7(s)) {1: ((s)) — 1 (70 (s:))} Ki (s) (B.42)

€A,
< leoll [[Mn (F(s); 8) = Mn (vo(s); )| = op(1)
from (B.41)), we have © 43(s) = 0,(1) as well, which completes the proof. B

IA A

n

Proof of Lemma First, for A} (r,s), we consider the case with r > 0. Let A;(r,s) =
1; (7o (s) +7/an) — 1i (vo (s)) and hi(r,s) = (cgmi)gAi(r, s)K; (s). Recall that 09 = con™¢ =
co(an/ (nby))'/2. By change of variables and Taylor expansion, Assumptions A-(v), (viii), and (x)
imply that

E[Af (r,s)] = Z E [h (B.43)

" ieAn

Yo(s)+r/an 2
- / / [ i) |q,s—|—bnt]K(t) f (@5 + bat) dadt
Yo

= ¢ D (10(5),8) cof (70 (5), )+O<an+b2>

where the third equality holds under Assumption A-(vi). Next, we have

2
Var[Af (r,s)] = 2b2 > hi(r, s] (B.44)
1€EA,
2
a?’l
= b —Var [hi(r > 721”26;\ Cov h ), hj(r, s)]
i#]

= Wai(r,s)+ Yaa(r,s).

Taylor expansion and Assumptions A-(vii), (viii), and (x) lead to
— On (On T\ A 2 1 ) A .
Uyi(r,s) = b, <bnE {(co ml) Ai(r,s)K; (s)]) - (bnE [(co xz> Ai(r,s)K; (s)
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since A;(r, s)2 = Ay(r,s) for r > 0, where each moment term is bounded as in (B.43)). For WU 4o,
we define a sequence of integers x, = O (nﬁ) for some ¢ > 0 such that x,, — oo and k2 /n — 0,
and decompose
a? a?
War(rs) = iz Y Covlhi(rs).hi(rs)l+ i > Covlhi(r,s), h(r, s)]

noG5eA, nGjeA,
0<A(%,5)<kn A(2,J)>kn

= \II£42(T7 3) + \I’ZB(T? 3)'

Then, since

Cov [anhi(r, s), Z—nhj (r, s)}

bn n

< 1B [(cJ 7). (cF5) 1 a3056:53) = (0 (5)70 (5).5:)| £ (0 )70 (5) 5, 9) + 0 (1)

(1]

using a similar argument as in (B.4) and (B.43), similarly as the proof of ¥ A, 3(s) in Lemma |A.1

we have
Uyo(r, s) < C’rzfii/n =o(1)

for some C' < oo. Furthermore, by the covariance inequality (A.1)) and Assumption A-(iii), we
have

242¢p
C' [ ay\ e a, 2/(2+¢)
[Wha(r.s)] < (b) > G, y))%@/(?*@)E[b\hm,s)\”ﬂ

2
" i,jEAR "
A(4,5)>Fon

< C"<%> = 3 Z S ()

" 1EA, m=Kkp+1 JEA,

A(i,5)€[m,m+1)
2420 0

C" (ay, 2+e

< C(2)7 X mewCmp/e+o)

m=rn+1

— 0 (n<<1—2e>(2+2«p>/<2+¢>>—1,_% exp(—frn/ (2 + SD))>
= o(1),

snnllarly as the proof of \11[14]3( ) in Lemma [A.1] because E[(a,/by) |hi(r, s)|?T#] is bounded as

in and we set 5, such that s, = O(n") for £ > 0. Hence, the pointwise convergence of
AY (7“, s) is obtained. Furthermore, since A% (r,s) is monotonically increasing in r and the limit
function ref D (7o (s),8) cof (7o (), 8) is continuous in r, the convergence holds uniformly on any
compact set. Symmetrically, we can show that B [AZ (r,s)] = —rcg D (7o (), 8) cof (7o (5),8) +
O (afl 14 b%) when r < 0. The uniform convergence also holds in this case using the same

argument as above, which completes the proof for A% (r,s). N
For B (r, s), Assumption ID-(i) leads to E[B} (r,s)] = 0. Let hi(r,s) = cg z;u; Ai(r, s)K; (s)
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and write

Var[B; (r,s)] = b—Var[h Z Cov[h ), h; (1, 9)]
JEAR
]175]

= Upi(r,s) + ¥pa(r,s).
As in , we have
\PBl(T,S):‘T’CJV(’YO( ) )Cof(’yo /K2 d’U—l—O( +b2>

which is nonsingular for |r| > 0 from Assumption A-(viii). For Upa(r,s), we define a sequence of
integers s/, = O(n’") for some ¢’ > 0 such that s/, — co and (n’ )2/nt=2¢ — 0, and decompose

Upa(r,s) = STT; Z Cov[i;i(r,s),%j(r Z Covlh (r s)]
1,JEA, 1,JEA,
0<A(4,5) <K, A(i,5) >k,

= \I],BQ(T’ S) + \IJ%Q(T’ 5)'

Then similarly as ¥, and ¥}, above, we have

K! 2
‘\11392(7", s)’ < Cri(xl)? x bn =0 <(”)) =o0(1),

an n172e

an 0/(2+yp) o
) mexp (—mp/(2 + ¢))

whro| < (5

m=rn+1

= ' exp(—rpp/ (24 ) = o(1)
for some C,C’ < co. By combining these results, we have

Var[B;, (r,s)] = [r[eg V (70 (5) ,8) cof (Y0(s), 8) w2 + 0 (1)

with k2 = [ K%(v)dv, and by the CLT for stationary and mixing random field (e.g., Bolthausen
(1982) and Jenlsh and Prucha) (2009)), we have

By (r,s) = W (1) /] V (39 (s) . 8) cof (1 (5) , ) o

as n — oo, where W (r) is the two-sided Brownian Motion defined in ((10).

This pointwise convergence in 7 can be extended to any finite-dimensional convergence in
r by the fact that Cov[B} (r1,s), B} (re,s)] = Var|[B (r1,s)] + o(1) for any r1 < ry, which
is because (1; (vg +72/an) — Li (79 +71/an)) Li (7o +71/an) = 0. The tightness follows from a
similar argument as J,(7;s) in Lemma and the desired result follows by Theorem 15.5 in
Billingsley| (1968). W

Proof of Lemma For the first result, using the same notations in Lemma we write
by (@ (3 (s)) — 90)
1 N —1
= {2669 26 |
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1

nby,

x { =BG ) -

= 041(s) {Op2(s) — Ops(s)}

similarly as (B.37)). For the denominator, since ©p1(s)
from (B.38]). For the numerator, we first have Opa(s) =

Oms(s) = ( an ' Y en, nzia] S {1; () — Li (10 (1))} Ki (s) >
a7l Sien, nmiw] 8o1i (7(s)) {1 (F(s)) — 15 (7 ()} K (s)

However, since Y(s) = v4(s) + 7(s)¢y,, for some r(s) bounded in probability from Theorem
similarly as (B.43)), we have

Z6(5)9)" (26 (615) = Zl(s)i0)) o |

= 041(s) in , then 9;}(5) = 0p(1)
Op(1) from . For ©p3(s), similarly

E !Z n= G xiw] {1 ((s)) — 1 (7o (s0))} K; (8)]

€A

max{yg(s+bnt),vo(s)+7(s)d1n}
< E {:vix;-rcdq, s+ bnt} K (t) f(q, s+ byt) dgdt
min{y,( 8+bnt) ’70(5)+7‘(8)¢1n}
max{vo(s)+r(s)p15,70(5)}
< B |wia] cola, s + bat| K (2) f (q,5 + but) dadt
min{yo(s)+7(s)d1,,70(s)}
max{’Yo(5+bn )v0(s)}
// E {xix;rcdq, s+ bnt} K (t) f(q, s+ byt) dgdt
in{7o(s+bnt),70(s)}
= andn [r(s)] [D (70 (s ), s) col f (70 (8) s 8) + Olanbn)
= O

1726b2
n

as an¢y, =1 and aby, =n — 0 < 00. We also have

Var | 7 n~za] 80 {1 (3(s)) — Li (v ()} Ki () | = O(n>) = o(1),

i€AR

similarly as |D Therefore, from the same reason as 1 , we have Op3(s) = Op(an Y ) =

0p(1), which completes the proof.

For the second result, given the same derivation for ©51(s) and ©p3(s) above, it suffices to

show that { . 1 -
MZ@(S); s)u(s) — MZ(%(S);S)T@(S) = op(1),

which is implied by Lemma [ ]

Proof of Lemma First, we consider the case with r > 0. For a fixed s € Sy, we have

{1lg <o () +7/an] = 1g <79 ()]} {1[g < 7o (5 + bnt)] — 1[g < 70 ()]}

_ { 1o (s) < <o (s +bat)]  if 7o (s + bat) < 70 (5) +7/an,
1[v9(s) <qg<7y(s)+r/a,] otherwise.
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Denote D, (q,s) = ¢d D(g,s)cof (¢,5). Then
B (B (r5)
— au [ [ D5+ bat)eo (110 < 70 (5) + /0] = 1la < 70 (51}
x {1lg <70 (s +0at)] = 1[g <70 ()1} K (2) f (g, s + but) dgdt

Yo(s+bnt)
= an/ / Deo(q, s + bpt) K (t) dgdt
T (r;s)

Yo(8)+r/an
/ / Dey(q, s+ but) K (t) dgdt
(r38) Jv0(s)

= B!(r,s)+ Brs(r,s),
where

T (r;s) = {t:70(s) <70 (s +bat)} N{L:70 (s +bat) <9 (s) +7/an},

Ty (r;s) = {t:70(8) <70 (s +bat)} N{E:70(s) +7/an <7 (s +bat)} .
Note that v (s) < 7o (s) + r/a, always holds for » > 0. Similarly as in the proof of Lemma
we let a positive sequence t,, — oo such that t,b, — 0 as n — oco. Since ftio tK(t)dt — 0 by
Assumption A-(x) with ¢,, — oo, both 7*(r; s) N {t : |t| > t,,} and T5"(r;s) N {t : |t| > t,} becomes
negligible as t,, — oo using the same argument in (B.17)). It follows that

Yo (s+bnt)
= s) = / / Doy (4,5 + but) K (£) dqdt + 0 (anby)
T1(r;8) Y7

+7"/an
s = an | / Do (0,5 + bat) K (£) dgdt + 0 (anbr)
Ta(r;8) Y9

where

Ti(r;s) = T (rss)n{t:|t] <tn},
Tiris) = Ti(rss) N {t: [ <t}

Recall that a,b, = n'~2%b2 — ¢ < oo and hence o (a,b,) = o(1). We consider three cases of
Fo(s) > 0, 4o(s) < 0, and 7¢(s) = 0 separately.

First, we suppose jy(s) > 0. For any fixed ¢ > 0, it holds t,b, < ¢ if n is sufficiently
large. Therefore, for both 7i(r;s) and 7Ta(r;s), 7o (s) < 7o (s + byt) requires that ¢ > 0 for
sufficiently large n. Furthermore, vq (s + byt) < 7 (8) + r/ay, implies that ¢ < 7/ (apbno(5))
for some s € [s,s 4+ byt], where 0 < 7/ (anbn¥yo(5)) < oco. Therefore, T1(r;s) = {t : t > 0 and
t <r/(anbnyo(s))} for sufficiently large n. It follows that, by Taylor expansion,

7/(anbn¥o(3))  pro(s+bnt)
(rys) = an/ / Deo(q, s + bpt) K (t) dgdt
0 70(5)
T/(anbn%(j)
= b Doy (10(5): )50l [ K (£) dt + anbuO (by)
0
= 0De(0(5), 80 ()K (1, 03) + o(1)
1—25b2

for sufficiently large n, since a,b, = n — o< oo and § — s asn — oo. Similarly,
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since vq () + r/an < Yo (s + bpt) implies £ > 7/ (apbnyo(s)) for some s € [s,s + byt], we have
Ta(r;s) ={t:t >0and t > r/ (anbpyo(s))}. Hence,

tn Yo(s)+7r/an
“5(rs) = an / / Des(¢, 5 + but) K (¢) dadt
r/(anbnYo(3)) Y vo(s)
t7l

= D¢ (70(s), 5) / K (t)dt + O(by)
r/(anbno(3)

TDey (Y0(8), 9) {; — Ko (1, 0; s)} +0o(1)

for sufficiently large n. Recall that |Kq (1, 0;5)| < 1/2 and |K; (1, 0;5)| < 1/2.
When 44(s) <0, —oo < 1/ (anbno(s)) < 0 and we can similarly derive

0 Yo(s+bnt)
“(rs) = an / / Doo(a, 5 + but) K (£) dadt
7/(anbnYo(3)) Y vo(s)

gD (10(5). )0 (8)K (r, 018) + 0 (1)
r/(anbn¥o(3))  pyo(s)+r/an
“5(rs) = an / / Des(6s 5+ but) K () dadt
i

—tn o(s)

Dal10(5)8) {3 Ko i)} + o).

When ¢ (s) = 0, it suffices to consider v,(s) as the local minimum, so that 44(¢) < 0 for
t € [s—eg,s] and y(t) > 0 for t € [s,s + ¢] for some small £. In this case, based on the same

argument as (B.18)),

Ti(r;s) = {t:yo(s+bnt) <o (s) +r/an} N{t: [t] <t}
To(ris) = {tiyg(s)+r/an <7y (s+but)}N{t:|t| <tn}.

Therefore, for sufficiently large n,

tn 'Y()(S"ant)
(rs) = an / / Dy (4,5 + but) K () dadt

0 70(5)

0Dy (0(5)s $)F0(5) / HK (£ dt + 0 (1) = o(1),

T/(@nbnﬁo(g)) 70(5)"‘7’/‘%

(rs) = an / / Dy (g, 5 + but) K () dadt
’Yo(s)
1

= 1De(70(8); 8) {2 — Ko (7, 0; S)} +o(l)=0(1)

—tn

since Ko (7, 0;5) = 1/2 when j4(s) = 0.
By combining all three cases and the symmetric argument for r < 0, we have

B (5] = I Dayr0(6),9) { 5 — Ko (12590 b+ 2Doy (00,9 (o) K (r55) +0 (1),

Furthermore, we have [By*(r, )| <> iy (602:)2 |15 (0 (8) 4+ 7/an) — 1; (70 ()| K; (s) and hence
Var [B:*(r,s)] = O(n2¢) = o(1) from (B.44)), which establishes the pointwise convergence for
each r. The tightness follows from a similar argument as in Lemma [A.T] and the desired result
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follows by Theorem 15.5 in [Billingsley| (1968). W

Proof of Lemma [A.11] Define W,(r) = W(r) + p(r), 77 = argmax,cp+ Wy(r), and 77 =
arg max,cg—- Wy, (r). The process W, () is a Gaussian process, and hence Lemma 2.6 of Kim
and Pollard (1990) implies that 77 and 7~ are unique almost surely. Recall that we define
W(r) = Wi(—r)1r < 0] + Wa(r)1[r > 0], where Wi(:) and Ws(-) are two independent standard
Wiener processes defined on RT. We claim that

E[rT] = —E[r7] < oo, (B.45)

which gives the desired result.

The equality in follows directly from the symmetry (i.e., P(r7 < t) = P(r~ > —t) for
any ¢t > 0) and the fact that W; is independent of W5. Now, we focus on r» > 0 and show that
E[r*] < oo. First, for any r > 0,

PV () 2 0) = P(Wa(r) = —u(r)) = (V2 > ~20) — 10 (2100)),

where ®(-) denotes the standard normal distribution function. Since the sample path of W,(-) is
continuous, for some r > 0, we then have

E[rT] = /OOO{I—IP’(T+§T)}dT
[ > 7r)dr h > r)dr
= /O]P’( >r)d +/7~ P(r">r)d

o0
< Cl+/ P(WM(T+)20andT+>r)dr

< 01+/°°1P(W,L(7«) > 0) dr

Cy + /TOO (1 — P (—”\(/Q» dr (B.46)

for some C; < oo, where the first inequality is because W, (7") = max,cp+ W, (r) > 0 given
W,(0) = 0, and the second inequality is because P (W, (r) > 0) is monotonically decreasing to
zero on [r,00) by assumption. The second term in can be bounded as follows. Using the
change of variables t = r¢, integral by parts, and the condition that r—(1/2+€) () monotonically
decreases to —oo on [r, 00) for some ¢ > 0, we have

[ (o)) ar < e [Ta ey

IN

= C3 /oo (1—®(t))dt'/e

rl/e

(o)
= Cy +C5/ e (t)dt < oo
rl/e

for some C; < oo for j = 2,3,4,5, where ¢(-) denotes the standard normal density function and
we use lim; oot/ (1 — @ (t)) = 0. The same result can be obtained for r < 0 symmetrically,
which completes the proof. B
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Proof of Lemma(A.12| For given (g, s), we simply denote u(r) = u (7, 0; s). Then, for the kernel
functions satisfying Assumption A-(x), it is readily verified that p(0) = 0, p(r) is continuous in
r, and p(r) is symmetric about zero. To check the monotonically decreasing condition, for r > 0,
we write

rCh rCy
wu(r) = —r/ K(t)dt + Cg/ tK(t)dt,
0 0

where C7 and Cj are some positive constants depending on (o, |[Yo(s)|,£&(s)) from (A.22). We
consider the two possible cases.

First, if K(-) has a bounded support, say [—r,r] for some 0 < r < oo, then u(r) = —rCs+ Cy
for 7 > r and some 0 < C3,Cy < oo. Thus, u(r)r~(1/2+¢) is monotonically decreasing to —oo on
[r,00) for any € € (0,1/2).

Second, if K (-) has an unbounded support,

rC rC
()= (/2%9) Z /2 / K (@)dt + 0290, / 1
0

rC’l

which goes to —oo as r — oo since [; “K(t)dt < JoStK(t)dt < oo and [ K(t)dt > 0. We
can verify the monotonicity since
1 rCq
O Ly}~ ( _ ) pm(1/2+) / K(£)dt — rV/2Cy K (Cyr)
or
< > —B/2+4) / t)dt + /2 C2Co K (Cyr)

_ (1/2+e>{(_5> / K(t)dt + K (Cir) (Cy — 0102)}

(e[

by the Leibniz integral rule. For r > r for some large enough r and ¢ € (0,1/2), this derivative
is strictly negative because (1/2 — ¢) 0r01 K(t)dt > 0 and lim, o rK(r) = 0, which proves
p(r)r—((/2)+€) is monotonically decreasing on [r, c0). The case with 7 < 0 follows symmetrically.

To prove Lemma we first present the following two lemmas.

Lemma B.3 There exist constants C* and C* such that for any v (-) € G,(So;T)

logn 1/2
sup [T, (55) < BT (i 5)l] < 07 (sup 11 (9) =0 ()] )
s€So s€So nonp

— - logn 1/2
sup [T () ~ B [T (339)]| < C° <Sup|7(8)—70(8)| )
s€So sESy nbn

122, < o0,

almost surely when n
Proof of Lemma We only prove the first results for T, (7y; s) because the proof for T}, (7; s)

is identical. We define
logn
=7 =0l e
n

28



where |7 = 7gllo = SuDses, |7 (8) — 7o (5)|, which is bounded since v (s) € I', a compact set, for
any s. In addition, when ||y —v¢l|,, = 0, T, (7;5) = 0 and hence the result trivially holds. So
we suppose ||y — Ygll,, > 0 without loss of generality. Similar to the proof of Lemma we let
Tn = (nlogn)V/(4+2¢) with ¢ > 0 given in Assumption A-(v) and

17009 = o 3 (0m) 184059) K3 (91, (B.47)

i€\,

where A;(7v;s) = 1;(v(s)) — Li(7v(s)) and 1., = 1[(05@)2 < 7p). The triangular inequality
gives that

sup [Ty, (73 8) — B [Tn (13 9)]] < sup [T, (v38) — To(7; 8)]

s€Sy €80
+ sup [E [T} (v;s)] = B [T, (7; )]
s€So
+sup [T, (v;5) — BT} (7;s)]]
EIS)

= Pri1+ Ppro+ Prs,

and we bound each of the three terms as follows.
First, we show Pr; = 0 almost surely if n is sufficiently large. By Markov’s and Hoélder’s
inequalities,

P ((cJ z) |8y s)] > rn) < Cr 029 o277 < ¢ (n1ogn) !

for some C,C" < oo from Assumption A-(v) and the fact that |Ai(7; s)| < 1. Then, as in the proof
of Lemma the Borel-Cantelli lemma implies that (c] xn) |An(7;s)] < 7y, almost surely for
sufficiently large n. Since 7, — 00, we have (cO xz) |Ai(7;s)] < 7y, almost surely for all € A,
with sufficiently large n. The desired results hence follows.

Second, we show Pry < C*qbéf almost surely for some C* < oo if n is sufficiently large. For
any s € Sy,

BT (v;8)] = BT (v; 5)]]

2
< b'E [ (Co xz) 1 [min{vy(s), 7(s)} < @i < max{vo(s),7(s)}] K; (s) (1 —1,,) }
: / / m{v{:iiv [(03 "’”i)z (I=1r)lg,s+ bnt} f(g, s + but) K (t)dqdt

max{7y,(s),7(s)} 2(4+2
< ro(B+20) // ’ [(chi) H s+ bnt:| F(q,s + but) K (t)dgdt
in{vo(s),7(s)}

< Cr 872 ||y — gl

for some C' < 0o, where B[(cg z;)24+2?)|q, 5| f(g, s) is uniformly bounded over (g,s) by Assump-
tions A-(v) and (vii); and we use the inequality

/ afa(a)da < T;(3+2‘p) \a|4+2“0 fa(a)da < T;(3+2(’0)E [A4+2‘p]
la|>7rn

la|>Tn
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for a generic random variable A. Hence, the desired result follows since

0" Iy~ ol 12 br'”
1/2 = |y - ’70” 52 1 3t2¢ 1 o(1),
3n n4+2e (1Og n) 1+20 T2

where ||7 — 7|l is bounded and (3 + 2¢)/(4 4+ 2¢) — (1/2) > 0.

Finally, we show Pr3 < C*gb;{f almost surely for some C* < oo if n is sufficiently large,
which follows similarly as the proof of Lemma[A~4] To this end, we partition the compact Sy into
my-number of intervals 7, = [sg, Sg+1) for k = 1,...,m,. We choose the integer m,, > n such
that m,, = O(Tnn(1+“")/(4+2‘*°)/(bngbéf)) and |sg41 — sg| < C/m,, for all k and for some C' < .
Note that my,,/n = C'n1=29/4/ [(n1=2p2) /4 (log n)/2~1/(4420)] > 1 for sufficiently large n and
C' provided n! =22 — ¢ < co. In addition, since we let (-) be a cadlag and piecewise constant
function with at most n discontinuity points, which is less than m,, Theorem 28.2 in Davidson
(1994) entails that we can choose these finite partitions such that

Sup [7(s) = (sk)| =0 (B.48)

for each k. Then we have
sup [Ty, (v58) —EB[T; (v;9)ll < max sup [T, (v;s) — Ty (581
SESO 1<k<mn SGIk

B —E[T] (v;
+1<I23}n{1n Ssélzli| [T (3 8)] [T (s s1)]|

. _ T .
+ max |T7 (i) ~ BT (50)]

= YU+ Yo + Vs,

Below we show Upy, Urs, and Uz are all oa (317,
Part 1: Uy and Ve are both oa.s,(gb?m ). Similarly as W term in Lemma we first
decompose [T77 (v;s) — Ty (73 5k)| < T7, (v; 8, s) + 13, (73 5, 51,), where

TG, (riss) = o Y (i) [8i0ris) = Ailaisn)| K () 1,
€A

T 1 T 2

Ty (rss) = —— > (@) 18 9)] 1K () = K (s0)] 1,
" icAn

Since K;(+) is bounded from Assumption A-(x) and we only consider 2 < 7,

TlTn (7; S Sk)

= nb Z (cO xl) [min{v(s), vo(sk)} < ¢ < max{vy(s),vo(sk)}] K (sk) 1~,
1€AR
o 2 () 1mingr(9)2(s0)} < g < max{a(s) 20} Ki (51) L,
€A,
C’1 Tn .
< { T (min(), 006} < i < max(30(6), 0(s0))
+C'1:l'"[p> (min{~y(s),v(sk)} < ¢ < max{fy(s),’)/(sk)})} (1+ 04.5.(1))
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< COprpbyt sup |s — s +0
s€Ty
-1

IN

ClTnb m,,
< Ci/n*(1+¢)/(4+2¢>)¢¥2

for C1,C1, CY < oo, where the second second equality is by the uniform almost sure law of large
numbers for random fields (e.g., Jenish and Prucha (2009), Theorem 2); the third inequality
is since 7q(+) is continuously differentiable, ¢; is continuous, and . Hence, 17, (v; s, sx) =
oa,s.(gz%{f), which holds uniformly in s € Zj, and k € {1, ..., m,}. Similarly, since K (-) is Lipschitz
from Assumption A-(x) and |A;(v;s)| < 1,

Tn
T, (yisosk) < Cayt > |Kils) = Ki(se,)|
" ieAn
- cm/ K(t)—K<t+s_bsk2> f (s + tby) dt
Cyt 1/2
< =
— C2b ‘8 8k2| — b = Oq.s. ( 3n )

for some Cy, CY, CY < oo, uniformly in s and k. Hence, Up; = oa.s_(qﬁ;ﬂ/f) and we can readily
verify that Wpo = o, S,(gf):l,) 2) similarly.
Part 2: Upg = Oqs (¢3%). We let

77 (s) = () { (e )25 9K (5) L, — B )M 9) K (5) 1, ]

and apply the similar proof as W /3 in Lemma In particular, we construct the block B (sy,)

in the same fashion as 1} Then, it suffices to show maxi<p<m,, ‘B[I](skﬂ = Og.s.( :1,”/12) as

n — oo. Using the same notations as in Lemma [A4] by the uniform almost sure law of large

numbers for random fields, we have that for any t =1,...,r and s € S,
2j+Dw (2241w
Caw?t 1 Csw?r —
U < T [ LS S Ay | < B 0l )
nby, w nby

11=2J1w+1 i2=2jw+1

almost surely from (B.19)), for some C3 < co. We also approximate {U:(s)};_; by a version of
independent random variables {U;"(s)};_; that satisfies

ZE U7 (5) = Ue(s)]] < 7C3 (nbn) ™" w7 17 = Yol 2 2 (w).

Then, similar to (B.24]), for some positive C* < oo,

il b2} < P "Gy
IP’(@I‘%L% B <3k)‘ >C ¢3n> < o sup tzl\Ut Us(s)| > C* ¢,
+m,, sup P ( ZUt > C*¢1/2>
SESO t=1
= ﬁUl‘i‘PUQ.
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For ﬁUl,

- Cs (nby,) "' w?
B < m," 3 (nbn) " W Ty |7 — Yolloo Qw2 w2 (W)

C’*qbl/2
n(1+e)/(4+2¢) I

T Y~ 70” %
< O 2 exp(—C5n™)

’ n¢3n ’

logn n’2

< 1 Kl
= C eXp( 0371 )<7’Ll_2€bn> (logn)ns

for some 1, k2, k3 > 0 and C%, C¥, C} < co. Hence Py1 — 0asn — oo, since logn/(n'=2%,) — 0
and the exponential term in the last inequality diminishes faster than the polynomial order.
For Py, using the same argument as 1) in Lemma we can show that

. C4w
E[U(s)?] = > EB[Z[(s)?]+ Y Cov [ZZ(S),Z}(S)]_ H’Y Yollso
1505w 1<iriy<w
1<j1,72<w

for some Cy < 0o, which does not depend on s given Assumptions A-(v) and (x). We now choose
an integer w such that

w = (nby/(CuTnA n))1/2,
A = (nb,logn)'/?

for some large positive constant C,. Note that, substituting A,, and 7, into w gives

ne/(2+e) nb? 1/8
(log n)(4+9)/(2+¢) <logn> ’
which diverges as n — oo for ¢ > 0 and from Assumption A-(ix). From (B.49), we have
IANUE(s)/ |1y — fyOHiéz | < 1/2 by choosing C,, large enough, and hence
AU (s) . (logn>1/2>
ox [ 228
nby,

" 1/2
sup P Uf(s)| >C > = sup IP’(
s€80 (Z seso \|[F v = oll2L2

1/2 2.2
2 exp < ) logn> n Carirw )

n2b,

1 1/2
= 2exp < 0gn> + 04/\31(71()”)_1)

= 2exp (—C*logn + Cjlogn)

w =0

IN

for some Cy4, C < 00 as in (B.26) and (B.27). It follows that

3/2
* 1/2 < an logn 1
Z Ut >C ) — nC* -C) — 05 <n126bn> (log n)“‘l nks

t=1
for some C5 < 00, ky =1 —(1/(4+2¢)) > 1, and k5 = (C* = C}) — 1 — ((1 —2¢)/2) > 1 by
choosing C* sufficiently large (e.g., C* > C} + 5/2). Therefore, Pyo < O(n™") — 0 as n — 0.

]3U2 my, sup P
s€Sp
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Since Py1 + Pra = O(n~¢) for some ¢ > 1, we have Yoo P(maxi<k<m, ’B[l](sk)| > C*gbé{?) < 00
and hence we obtain the desired result by the Borel-Cantelli lemma. B

Lemma B.4 There exists some constant Cr, such that for any v(-) € Gn(So;I') and any j =
1,...,dim(z)

1/2
sup | Ly (7 8)] < Ci (sup I (5) = 7o (smogn)

s€Sp €80
almost surely when n1=22 — o < cc.
Proof of Lemma The proof is similar to that in Lemma and we only highlight the
different parts. We assume x; is a scalar, so as L, (7v;s). As in (B.47), we let

Ly (7;8) i A ( K;i(s)1,,,

zEA

where A;(7y;8) = 1; (7 (s)) —1i (79 (s)) and 1., = 1[|zju;| < 7,] with 7, = (nlog n)l/(4+2‘p). Since
E[L] (v, s)] = 0, we write
sup |Ly (v; )] < sup [Ly, (73 8) = Lu(y; 5)[ 4 sup [L7, (7; )]
s€8Sp s€8p s€So
= PL1 + PLQ.

Using the same argument as Prp in the proof of Lemma we have
P (|zius| |As(y; 8)| > 7)) < O, WH20)R [Hmiuiﬂz(ﬂq’)] < C' (nlogn)™*

for some C,C” < co. Then the Borel-Cantelli lemma implies that |z;u;| |An(7;s)| < 7 almost
surely for sufficiently large n. Since 7, — oo, we have |z;u;| |Ai(7;s)| < 75, almost surely for all
1 € A, with sufficiently large n, which yields Pr; = 0 almost surely for a sufficiently large n.
For Ppra, we let ¢3, = |7 — 7ol logn and write
LT (7v; < L] LT (v; LT (7;
sup |Ln (o)l = mmaxe sup (L (i) = Ly (vi i) + | mmax L7 (7; )l
= Wi+ Yo,

for some integer m,, = O(1,n(3+22)/(4+22) /(p gi)?m )), where m,,/n > 1 for sufficiently large n. We
let Z7(s) = (nbn) "' 2zu;8:(v; 8)K; (s) 1,,, and we choose w = ((nby,) / (CwTn)n))'/? for some
large positive constant C,, and A, = (log n)l/ 2. Then, the rest of the proof follows similarly as
bounding Pr3 in the proof of Lemma [

Proof of Lemmam We first show (A.23|). We consider the case with supgcg, (7 (s) — 70 (s)) >
0, and the other direction can be shown symmetrically. We suppose n is large enough so that

T, < C for some 7,C € (0,00) and sup,es, (7 (s) — 7o (5)) € [Fdg,, C]. We also let
{=inf £p(s) >0

s€Sp
where £ (s) is defined in (B.28)). Then, from (B.29)), we have
sup B [T, (v;8)] = £sup (v(s) — 70 (s)) - (B.50)
s€Sp IS
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For any £ > 0 and for any 7 (-) such that sup,cs, (v(s) — 7 (s)) € [F¢o,,C], Lemma and
(B.50) imply that when n is sufficiently large,

SUPses, In (75 5)
SUPses, |7 () — 70 (5)]
SUPses, E [T, (v;8)] — SUPges, T3 (5 8) — B [T (75 9)]|

>
- subscsy 17 (5) = 70 (5)]
1/2
L W, BT (59)]  (suPes, [7(8) =70 (5)] (logn/m)
T suPes, [7(8) =70 ()] SupPses, 17 (5) = 70 (5)]
1/2
> (- M Zﬁ—?ilnfe.

= _1/2

7’¢2£L
Since £ > 0 does not depend on v (-) and 7 1n=¢ — 0 as n — oo, we thus can find Cr < oo such
that

P inf SUPges, Tn (’Y; S)
{v()EGn(SoiD):  SuDges, |7 (8) — 70 (5)]
T2, <SUPses, [7(s)—70(s)|<C}
for any €,n7 > 0. The proof for (A.24) is similar and hence omitted.

For ([A.25)), we present the case of scalar z; and so is Ly (v; s), for expositional simplicity. We
set 7, for g = 1,2,...,g + 1 such that, for any s € Sp, 7, (s) = 7o (s) + 29717 ¢, , where g is an
integer satisfying sup,cs, (77 (5) — 70 (5)) = 20y, < C and sup,c, (31 (5) — % (5)) > C.
Then Lemma [B.4] yields that for any n > 0,

swues, [Ln (118)| 77)

<Cr(l—mn)| <e.

v <mx VanSPacs, (7 () — 20 () 4 (51

B Y YL
g=1 Qn SUPges, (’yg (8) — 70 (8)) 4
_ A< L (6g,logn)'””
TN V29 7y,
S g
nr pct AV

for some Cr,C} < oo. This probability is arbitrarily close to zero if 7 is chosen large enough.
Following a similar discussion after , this result also provides the maximal (or sharp) rate
of ¢,,, as logn/a, because we need (logn/a,)/dq, = O(1) but ¢, — 0 as logn/a, — 0 with
n — oo. For a given g, we define I'; as the collection of v (-) € G, (Sp;T) satisfying 7297 1¢,, <
SUPges, |7 (5) — 70 (8)] < T29¢9,. By a similar argument as and Lemma we have

P | max sup Pseso ‘Ln (7; S) — L (Wg; S)‘ > U < C—Z
1290 €Ty /@nSWDses, (V4(5) =70 (s)) ~ 4 )~ nr

for some C/ < oo, which is arbitrarily close to zero if 7 is chosen large enough. From (B.36)), and

(B.52)
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by combining (B.51) and (B.52), we thus have

SuPses, | Ln (75 5)]

P sup >
{v(-)EGn (So;T): B V/ Qn SUDges, (7 (S) — %0 (3>)
Thon <SUPse s, [7(s)—70(s)|<C}
< P|2 max $Psesy |In (115)] > 1
1959 /A SUP,es, (74 (5) =70 (5)) ~ 2

su L,(v;s)— L ;S
+P | 2 max sup Daeso ‘ n (7:9) - ('Yg )‘ > J
1<g<g vely \/CTnsuPSESO (79(5) — 70 (S)) 2

< ¢

for any e,n > 0 if 7 is chosen sufficiently large. B
Proof of Lemma We prove sup,cs, [7(s) — 7o(s)| = 0p(1). From (B.37), we have

~1
w sup [BG(3) = 0l < (inf 03] { sup [©.206)] + sup [O2(5) }.

s€Sp s€Sp s€So
Hence, given Lemma and the standard uniform convergence result of the kernel estimators,
nsupes, |10(V(s)) — Oo|| = 0p(1) can be obtained similarly as the proof of Lemma, provided

that we have sup,cg, [7(s) — vo(s)| —p 0 as n — co. Recall that ¥(s) is the minimizer of Y, (v; s)

in (A.5) and 7, (s) is the minimizer of Yo(7;s) in for any given s € Sp. See Lemma for
the definitions of Y,,(y;s) and Yo(y; ).

Suppose 7(s) is not uniformly consistent, implying that there exist n > 0 and € > 0 such that
for any N € N, there exists n > N satisfying

P (sup () - 30(5)] > 1)

s€Sp

= P (sup (3(6) ~20(6) > 1) + P (sup (3(6) ~ 10(6)) < =) >

EISS) EIS)
or simply

P(mp@@w~mw»>n>>s (B.53)
s€8Sp

without loss of generality. From (A.8), we can define C' € (0,00) such that

o OTol()55)

>C >0,
s€8Sp 8"}/

and hence the mean value theorem yields

To((s),5) — Yolro(s)s) = 8“f§$”)@@>—%@»

> C((s) = 70(s))
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for sufficiently large n, where 7(s) is between 7(s) and 74(s). Therefore,

P (sup {To(3(s).5) = Tolg(s)5)} > Cn) (854
SESQ
o 0To(vo(s); s) 5 )
> P inf ————— - >C
(ing 2202 sup (365) =005 > €
~ P (sup ((s) — 70(s)) > n) >
SESy
from (B.53).
However, by construction, Y, (5(s),s) — Tn(vo(s),s) < 0 for every s € Sp, which implies
sup {Yn(7(s),5) — Tn(yo(s),s)} <0 almost surely. (B.55)
SESy

Furthermore, using the triangular inequality and the uniform convergence result in Lemma
we can verify that
sup | Yp(r,s) — Yo(r,s)| =, 0 (B.56)
(r,s)€T'xSo

as n — oo from the proof of Lemma From (B.55)) and (B.56)), we thus have

P (sup [Yo(3(5).5) — Yo(ro(s), )} > Cn)

s€Sy

<P (sup {Yo(3(5).5) — TuA(s), )} > On/s)

SESy

P <§£Sp [La(3(5),5) = Talro(s), )} > cn/s)

P <§;‘§ (0 (r0(5), ) — To(vo(s), )} > On/s)

< (EB)+(EB)+(7/3)=¢"

for any €* > 0 if n is sufficiently large. It contradicts to (B.54]) by choosing ¢* < e, hence the
uniform consistency should hold. B

Proof of Lemma We prove Zga = 0p(1) and Zgs = 0p(1). The results for =52 and Zs3
can be shown symmetrically. For expositional simplicity, we present the case of scalar x;.

For Zgy: Note that 7(-) belongs to G,,(So;I"). We define intervals 7, for kK = 1,...,n, which
are centered at the discontinuity points of 7(s) with length ¢, such that ¢, — 0 as n — oo.
Without loss of generality, we choose ¢, = O(n~3). Then, we can interpolate on each Z; and
define 7(s) as a smooth version of 7(s), which satisfies

P (sup 7 (s) =7 (s)| > z—:) <P| max sup |7 (s) =7 (s)|>¢e | <e (B.57)
s€Sy 1<k<n se7,

for any ¢ > 0, if n is sufficiently large. Since supycg, |7 (s) —Yo(s)| = 0p(1) from Lemma
we have

sup |7 (s) =70 (s)| < sup [7 (s) =5 (s)| + sup [ (s) — 70 (s)| = 0p(1) (B.58)
s€8Sy s€8Sy s€Sp
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from ([B.57).
Now we define

1
Gn(7) = —= Y miuil (g > v(s) + 7] Ls,,
v e
and then
g2 = Gn(7) — Gn('YO)
{Gn(V) — Ga(V)} +{Gn (V) — Gn(70)}
= VYg + VYgo.
First, for Wy, let AT(7,7) = 1[g > 7(si) + ™) — 1[¢ > Y(si) + 7). By construction,

|AT(7,7)| < 1[s; € I}, for some k]. Therefore, by the Cauchy-Schwarz inequality and Assumptions
A-(v) and A-(viii),

E([Vcil] < n'Elziwl|AT(,7) 1s)]
1/2 271/2 211/2
< n'PE [(ziw)?] T E [(1[& € Iy, for some k]ls,)
< C1n'/? (P[s; € T N Sy for some k])1/2
< Chnl'?n73% = o(1)

for some C4,C] < oo. Hence, W1 = op(1).
Second, for Wgo, we let 1, = 1[|z;u;| < 7] for some 7 < oo. Then, for any € > 0 and
v So — T,

P (\/15 Z Tu; 1 [qi > ’)’(Si) + TI'n] (1 — 17-) 130 > 61)

i€Ay,

2
1
< g *-E (Z ziuil (g > v(si) +mp] (1 —1;) 150>
" i€hn
>~ 05;2E |:($ZUZ)2 1 Hmlul| > T]}
1/2
< Csf2E |:(l’1u1)4] (P [|ziu;| > 7'])1/2

< Ce?r°R {(a:zuz)ﬂ

for some C' < oo, where we apply the Markov’s and the Cauchy-Schwarz inequalities. From
Assumption A-(v), by choosing 7 sufficiently large, this probability can be arbitrarily small.

Hence,
_ 1

NG

for sufficiently large n and we simply consider |z;u;| < 7 almost surely in what follows.

We let F* be the class of functions {zul [q > v(s) + m,] for v € C?[Sp]}, where C2[Sy] denotes
the family of twice-continuously differentiable functions defined on Sy. Using Theorem 2.5.6 in
der Vaart and Wellner (1996), we establish that F* is P-Donsker, which requires three elements:
an entropy bound, a maximal inequality, and the chaining argument. For the entropy bound, by
Corollaries 2.7.2 and 2.7.3 in der Vaart and Wellner (1996) (with their r = d = 1 and a = 2),

Gn(7) Z xiuil [g; > Y(si) + 7] 171s, + 0p(1)

1€AR
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F* has the same bracketing number (up to a constant) as that for the collection of subgraphs
of C2[So], so that log Nj (e, F*, || - |loc) < Ce=1/2, where || - ||oo denotes the uniform norm. For
the maximal inequality, since we consider |zu| < 7, Corollary 3.3 in Valenzuela-Domiguez, Krebs,
and Franke (2017) gives the Bernstein inequality for spatial lattice processes with exponentially
decaying a-mixing coeflicients. This satisfies the conditions in Lemma 2.2.10 in der Vaart and
Wellner (1996), which implies that for any finite collection of functions vy, .. .,7,, € C?[So],

E Lr<r}€a<x Gn(y )} <C (log(l +m) + +/log(1 + m)) (B.59)
for C' < co. For the chaining argument, the same analysis in der Vaart and Wellner (1996), pp.131-
132 applies with the following two changes: their envelope function F' is |zu|, which satisfies
E [F?] < oo; and their inequality (2.5.5) is implied by (B.59) with m = log Ny (g, F*, | - [|oc)-
Note that the spatial dependence only shows up in deriving the maximal inequality but not the
entropy or the chaining argument.

Since Donsker implies stochastic equicontinuity, it follows that G, (+) satisfies, for every positive
N, — 0,

sup |Gn(7) - Gn(’yl)‘ —p 0
sup,es, 7(8)—Y'(8)|<n,

as n — o0o. Therefore, ¥gy = 0,(1) since sup,eg, [7(5) — 7o(s)| = 0p(1) from (B.58).
For =Zg3: On the event E;“L that sup,es, [7(s) —7o(s)| < ¢g,, we have

B [|Z54]] f 7 B [|e260| 11as < vo(s0)] 1 [a: > A(s:) + ] L,

€A,
n!PCR g < vo(s:)] 1 [gi > A(si) + T 1]

1/2 ECE[ g < 70(31)] 1 [QZ > 70( ) ¢2n + Wn] 150]

= nl/? 6C’/ / f(q, s)dqds
So JI(g;s)

for some 0 < C' < oo, where Z(g; ) = {q : ¢ < vo(s) and ¢ > v,(s) — ¢g,, + mn}. Since we define
mp > 0 such that ¢, /m, — 0, it holds that m,, — ¢5,, > 0 for sufficiently large n. Therefore, Z(g; s)
becomes empty for all s when n is sufficiently large. The desired result follows from Markov’s
inequality and the fact that P(E}) > 1 —¢ for any ¢ > 0. W

IN N
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S.2 Additional Simulation Results

This section provides additional simulation results. The data generating process is the same as
that in Section [f] in the main text except that vo(s) = sin(s)/2. Tables[S.1] to [S.4] below present
the analogous results to those in Tables [2] to [f] in the main text. We also plot the averaged 7 (s)
across simulations and the density estimator of 52 — 090 in Figure E The findings are similar to
Figure [3[in the main text.

Table S.1: Bias, RMSE, and Rej. Prob. of the LR Test with i.i.d. Data

s =20.0 s =10.5 s=1.0
n\o 1 2 3 4 1 2 3 4 1 2 3 4
Bias
100 -0.07 -0.05 -0.04 -0.04 -0.25 -0.19 -0.14 -0.12 -044 -0.33 -0.30 -0.27
200 -0.05 -0.02 -0.04 -0.03 -0.21 -0.14 -0.09 -0.06 -0.36  -0.27 -0.22 -0.17
500 -0.03 -0.03 -0.02 -0.02 -0.14 -0.06 -0.04 -0.03 -0.28 -0.13 -0.11 -0.07
RMSE
100 0.27 0.14 0.08 0.06 0.35 0.21 0.12 0.09 0.51 0.37 028 0.21
200 0.25 0.08 0.056 0.03 0.30 0.15 0.08 0.05 045 0.29 0.20 0.15
500 0.19 0.05 0.02 0.01 0.22 0.08 0.03 0.02 0.37 0.14 0.08 0.05
Rej. Prob. of the LR test
100 0.14 0.09 0.07 0.08 0.16 0.09 0.09 0.07 0.27 0.17 0.14 0.13
200 0.10 0.06 0.06 0.07 0.11 0.07 0.06 0.05 0.19 0.10 0.07 0.07
500 0.08 0.04 0.05 0.07 0.07 0.05 0.04 0.05 0.11  0.06 0.03 0.03

Note: Entries are bias and root mean squared error (RMSE) of the estimator 4(s) and rejection probabilities of
the LR test when data are generated from with v, (s) = sin(s)/2. The dependence structure is given in
(19) with p = 0. The significance level is 5% and the results are based on 1000 simulations.
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Table S.2: Bias, RMSE, and Rej. Prob. of the LR Test with Cross-sectionally Correlated Data

s =0.0 s=0.5 s=1.0
n\o 1 2 3 4 1 2 3 4 1 2 3 4
Bias
100 -0.04 -0.05 -0.05 -0.07 -0.24 -0.19 -0.15 -0.14 -0.43 -0.37 -0.30 -0.30
200 -0.04 -0.06 -0.05 -0.03 -0.21 -0.12 -0.08 -0.07 -0.40 -0.30 -0.23 -0.19
500 -0.03 -0.02 -0.02 -0.02 -0.16 -0.07 -0.04 -0.03 -0.33 -0.18 -0.11 -0.09
RMSE
100 0.29 0.17 0.11 0.09 0.34 023 0.16 0.11 048 0.38 0.29 0.26
200 0.28 0.13 0.07 0.04 0.34 0.15 0.09 0.06 0.50 0.33 0.20 0.15
500 0.21 0.06 0.03 0.01 0.28 0.10 0.04 0.02 042 0.20 0.10 0.06
Rej. Prob. of the LR test
100 0.18 0.13 0.09 0.08 0.19 0.12 0.10 0.07 033 021 0.17 0.13
200 0.14 0.06 0.07 0.06 0.13 0.08 0.05 0.06 0.19 0.12 0.09 0.07
500 0.09 0.06 0.06 0.07 0.10 0.05 0.04 0.05 0.11  0.06 0.04 0.04

Note: Entries are bias and root mean squared error (RMSE) of the estimator 4(s) and rejection probabilities of
the LR test when data are generated from with v, (s) = sin(s)/2. The dependence structure is given in
with p = 1 and m = 10. The significance level is 5% and the results are based on 1000 simulations.

Table S.3: Bias and RMSE of the Coeflicient Estimates

Bao Bao+d20 d20
n\& 1 2 3 4 1 2 3 4 1 2 3 1
Bias
100 0.07 0.10 0.07 0.05 -0.07 -0.08 -0.06 -0.03 -0.14 -0.17 -0.14 -0.09
200 0.07 0.06 0.04 0.03 -0.08 -0.06 -0.04 -0.03 -0.17 -0.12 -0.08 -0.06
500 0.06 0.03 0.01 0.01 -0.06 -0.02 -0.01 -0.01 -0.12  -0.05 -0.02 -0.01
RMSE
100 0.35 0.39 0.38 0.36 0.35 037 039 0.37 0.51 056 0.56 0.52
200 0.23 0.23 0.21 0.21 0.24 024 022 0.23 0.36 034 030 0.31
500 0.14 0.12 0.11 0.11 0.14 0.13 0.12 0.12 0.22 0.18 0.16 0.17

Note: Entries are bias and root mean squared error (RMSE) of the proposed two-step estimator for 8,4,

Bao + 020, and dz0. Data are generated from with 7, (s) = sin(s)/2, where the dependence structure is given
in with p = 0.5 and m = 3. The results are based on 1000 simulations.
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Table S.4: Coverage Prob. of the Confidence Intervals

Bao Bag+020 920
n\& 1 2 3 4 1 2 3 4 1 2 3 4
Coverage without small sample LRV adjustment
100 0.83 0.86 0.88 0.89 0.85 0.87 0.89 0.87 0.84 0.86 0.89 0.89
200 0.86 0.90 093 094 0.89 0.90 0.93 0.92 0.84 0.90 0.92 0.93
500 0.87 0.93 094 0.93 0.89 0.93 094 0.93 0.85 0.94 0.95 0.93
Coverage with small sample LRV adjustment
100 091 094 094 094 0.92 0.93 094 0.95 091 092 0.95 0.95
200 093 0.95 0.96 0.98 0.93 0.96 0.97 0.96 092 0.96 0.97 097
500 0.93 0.97 097 097 0.93 0.95 097 097 0.91 097 097 0.97

Note: Entries are coverage probabilities of 95% confidence intervals for 85, B59+020, and d20 with and without a
small sample adjustment of the LRV estimator. Data are generated from with 7, (s) = sin(s)/2, where the
dependence structure is given in with p = 0.5 and m = 3. The results are based on 1000 simulations.

Figure S.1: The Average of the Threshold Estimates and Kernel Density of Coefficient Estimates

Estimated and true thrsholds ) Kernel density of the estimated change size

o5 o
s 5 — &

Note: The left panel depicts the average of 4(s) and the right panel depicts the kernel density of §2—040 from
1000 simulations. Data are generated from with 7, (s) = sin(s)/2, where the dependence structure is given in
(19) with p = 0.5 and m = 3.
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