Supplementary Material for “LASSO for Stochastic
Frontier Models with Many Efficient Firms”

William C. Horrace*  Hyunseok Jung' Yoonseok Lee?

This online Appendix contains proofs of the results in the main text of the article (Part

A) and additional Monte Carlo simulation results (Part B).

A. Proofs

Let sexp = (log N)/v/T. We first derive some technical lemmas.

Lemma A.1 Suppose Assumption 2-(1) and 2-(2)-(ii) hold. Then, for some 0 < C,,C, <

00, as (N,T) — oo, we have
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Proof of Lemma We only prove the first part of (a) since the proof for the second

part of (a) is similar, and (a) implies (b), because

max
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and similarly for the second part of (b), if (a) is true.

To prove the first result of (a), we let My = /T/(logT)? and 1, = 1{||zy|| < Mr}. We
define

&t = xply — Elryly,
fz,z't = Ty (1 - ]-it) )

53,z’t = -k [ﬂfz’t (1 - ]-it)] .
Then, x4 — Elvy] = &0 + o, + E3,i¢ and thus we have
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We prove the first part of (a) by showing

g%NT> =0 (1) )

(al) N- nax, Pr (H Z&zt 5
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(a2) N - max Pr (

1<i<N

—%NT> =o0(1), and
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%NT)

T
E 3zt

1<i<N

To prove (al), we let &) = &1 for some constant p x 1 vector ¢ with |[[p]|| =
Then, by Assumption 2-(1)-(ii), £f;; is a zero-mean strong mixing process, not necessarily
stationary, with the mixing coefficients satisfying aft] < c¢,p' for some ¢, > 0 and p €
(0,1). In addition, max;<i<r [§7 ;] < 2Mp almost surely by construction. We define v3, =
maxi<j<n SUp;s{var(§y;,) + 23202, leov(&f i, €1 4,)|, which is bounded by Assumption 2-
(1)-(ii) and (iii), and the Davydov inequality. Then, by Lemma S1.1 of |Su, Shi and Phillips

(2016)), there exists a constant Cp > 0 such that for any 7" > 2 and C, > 0,

2722
Z% NT) < Nexp( oGl yr /4 >

T
IS
1<i<N T 1,2t
t=1

2T + AM2 + 2C,Tsenp My (log T)? /2
CoC?(log N)? /4
- — v —logN} ).
o ( {v?v T4/(ogT)' + Co(log N) —®

Thus, by choosing C, sufficiently large, it follows that

N-maxPr(

1<i<N

N max Pr(

T
E 1,it

> —%NT> —0 as (N, T) — o0

Next, by Assumption 2-(1)-(iii) and 2-(2)-(ii), and the Boole and Markov inequalities,

we have
1 « C
il . z < . >
N %%Pr( thl St 25 %NT> N b (f?ix ] MT)
< NT max max Pr(||z;| > Mr)
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NT
2 ax max E a9
M SN 12T [zl

= o(1).

Lastly, by Assumption 2-(1)-(iii), and the Hélder and Markov inequalities,

1 T
T tz:; &3,it

max < max max E ||zl {||zy] > M7}
1<i<N 1<i<N 1<t<T
2/a
< max max (Ellea|®?)" max max {Pr(llaall = Mp)}@
1<i<N 1<t<T 1<i<N 1<t<T
-2
< max max <EHx.t||Q/2>2/q max max M o
= 1SN 1T ’ ISi<N1<t<T \ M

= O (M;(q72)> o(»nr)

where we use the fact that M:(quz)%NT = T=3)/210g N/(log T)? — oo for ¢ > 4 in the last

step. Then, the desired result follows by combining (al), (a2) and (a3). W

Proof of Lemma 1 First, note that

1
T

< max
1<i<N

E
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where max;<;<n El|z;|| = O(1) and HB — Bol| = O,((NT)~*/2) due to Assumption 2-(1)-(iii)

and 2-(2)-(i), which implies for sufficiently large 0 < C' < o0,

T

%Z {@t(ﬂo -8+ Uit}

t=1

Pr | max
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by Lemma [A.]]



Recall n = min;ese up; and &; = 71 ZtT:l(yit - x;tﬁA) =7T! EtT:l(Oéo — ug; + 24 (Bo —
B) + v;) where up; = 0 for all i € S. Thus, it follows that

min &; — max &;
= eS¢

T T
= min {% > (oo + 2B — B) + Uzt)} — max {% ;(040 — o + Ty (Bo — B) + Uz‘t)}

t=1

T T
1 1 R
> ?elérclum mln{ ; w(Bo— ) + Uzt)} - I}é%x {T ;(x’it(ﬂo —B) + Uit)}]
1 T
2 - 2 1211a<)](\, Zl it ﬁO + U'Lt)
t=
T_0
> 5 - P(xNT)v
which implies
Pr (min Q; — max &; > O> — 1 (A.2)
= ieSe

s (N,T) — oo since n > 0 and n/snyr — oo by Assumption 2-(2)-(iii). (A.2)), in turn,
implies Pr (& = max;es &;) — 1 as (N,T) — oo because & is defined as maxj<j<y &;.
By (A.2), we can let & = max;es@; for sufficiently large (INV,T), instead of & =

maxi<;<ny &;. Hence, for sufficiently large (N,T"), we have

éé—()éo| =

T

max {% Z (ao + 23,(Bo — B) + Uz't) } — Qo
1;:1
.

1 R
< s |7 2 (5 = 8) )| = e
from [A.T], which proves Lemma 1.
Since 7:LZ = & — CAYz = (d — Oéo) + (Oéo — dl) = ((3( — Ck(]) + ('U/(],i + Qo — d,) so that



|t — uoi] < |6 — | + |6 —aps| < 2maxi<icy %Zthl xh,(Bo — B) + v;| by the results

above, we also have
Pr (|712 - u(M] Z C%NT) =0 (1) (A?))
for sufficiently large 0 < C' < oco. N

Proof of Theorem 1 For Equation (5) in the main text, we form a Lagrangian as
N T R , N N
L (e, {us ity {pitit) = Z Z (yit —ayB—a+ Uz) + A Z Tl — Z,Oiuu
i=1 i=1

=1 t=1

where p; > 0, u; > 0, and p;u; = 0 (complementary slackness) for all . From the Karush-

Kuhn-Tucker (KKT) conditions, we have

Recall § = |S|/N and let 6 = |S|/N. By plugging (A.5) into (A.4), we have

al\) = % > XT: (yz-t - x;ﬁ) + % > XT: (yit — 2B + s (A))

ie§ t=1 ieSe t=1
- XY (e -td) 1 X (a0 - )
= == it — Ty - — =T
NT ie8 t=1 Nie§c 2r
1 d . N A )
— ﬁ%; (Z‘;t (50-5) +040_U0,i+vit> + (1 —5) Oé()\) — m ‘€§C7Ti



and hence

T

a(A) —ag= SNT ZZ ( Tyt (50 - ) — Ug,i + Uz‘t) - ﬁ ;. (A.6)

€8t eS¢

This shows that &()) is estimated as a common intercept for the firms classified as fully

efficient by the LASSO and also contains bias due to the use of shrinkage on ;(\). From
(A.5), it follows that, for i € 8¢ (i.e. U (A) > 0),

- _ 1/, ~ AL
u; (\) = CY(A)—TZ:(it(ﬁo—ﬂ)‘f—ao—uo,rf—vz‘t)—ﬁﬁi
T
T (D)) () e
)\ A
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We prove the theorem by showing S € S and 8¢ C S¢ w.p.a.l.

(i) We first prove S € S w.p.a.l by showing Pr(max;es@;(A\) >0) — 0. Let 7 =

maX;es U;. Then, from (A.5)), for any C' > 0, we have

X . AL
Pr (I?E%X i (N) > 0) = Pr (I?E%X {a()\) — & — Tﬂ—i} > 0)
A

< Pr (max {a(/\) — &y — Tfrl-} >0,7< C%NT) + Pr(7 > Csnr)
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T
A
_ vy
= (2112“2% Z_ B) +va| = o (Coavr)” >0>

+Pr(7 > Crpr) (A.7)

where we use the fact that ug; > 0 and 7; > 0 for all j in the last step. Then, by choosing
sufficiently large 0 < C' < 0o, we can easily show that first term in (A.7]) is o(1) due to (A.1)
and ((A/T)syy)/3enT — 00 as (N, T) — oo by Assumption 2-(3). The second term in (A.7)

is also o(1) because

7':1r£1€eg><uz I?Ea:sx{(oz—ozo) (G — )} < 2112%(\[

Z xzt 60 - + (%7

and (A.1), where we use the fact vy, =0 for i € S.
(i) Next, we prove 8¢ C &¢ w.p.a.1. Define D; = {i;(\) = 0} and then,
Pr (there exists i € 8¢ such that 4;(A\) = 0) = Pr <U Di> .

eS¢

Let |S¢| = J. We arbitrarily list the firms in S¢ and use an auxiliary index, [j] for j =1, ..., J,
to denote the j firm on the list. Then, we can partition Uicse Di into disjoint sets such

that Dy N (szz D[j]) , Dy N <U;.]:3 Dm> , ..., and Dyy. Therefore, we have



which is true regardless of the order of the firms on the list. So, we list the firms in &°¢
according to the size of inefficiency in ascending order so that ug ;) < ... < ugj)... < ug .

Then, we have

Pr (there exists i € 8¢ such that 4;(\) = 0)

J
= ZPI“ (fb[j](/\) =0, a[j—&-l](/\) > 0, ﬂ[j+2](/\) >0,..., ﬂm()\) > O)
j=1

J
= ZPI‘ (ﬁm()x) =0 ’ fb[j+1]()\) > 0, ...,ﬁ[J]()\) > 0) X Pr < []+1]()‘) >0 ‘ fb[j_,_g]()\) > 0, )

j=1
.. x Pr (’&[J_l}()\> >0 ’ /&/[(]]()\) > 0) X Pr (ﬁ[J]()\) > 0)
J

< ZPY (ﬁ[j]()\) =0 ’ ﬁ[j+1]()\) > 0, ...,ﬂ[J]()\) > 0)
j=1
J 1 T \
= ZPY TZZ(Zt Bo— P _UO,i‘l'Uit)_m T
j=1 €S t=1 2 i€Se
1/, . A A
—7 D (“”mt(ﬁo = B) = uop + Umt) — 5T <0 ’ 1 (A) > 0, . gy (A) > 0
t=1
J T
Z- s U4 1 ~ A R
= Pr [ ugp — &85 4 (x;;ﬁ—ﬂ +vi>— - 7t
jzl UGN 5NTZ; olfio = B) + 25NTZ
-~ 1ES 1€S¢
(*)
1 « A
— = Z x{j]t(ﬁo — 5) + v 7T[J] <0 u[j+1]()\) > 0, ...,ﬁm()\) >0 (A.S)
T — ST

We let $* = 8°NS and 6* = |S*|/N. Then, () in the j™ probability of (A.8) satisfies

7 3* j
Uo,[j] — L8 U > ug ) —
ON 5

since ug; = 0 for all « € § and wg ;) = max; _g.ug; in the 4" event by construction, which



further gives us the results

5 )
Uofj) = = Uofj) = FUoj > dug,[j) = 0N (A.9)

sinceg—g*zéandéggglasSCS.
Let f] :mil’liegc’&i and d = ﬁzles Zz;l <l‘;t(ﬁ0 — B) + Uit) .

sufficiently large 0 < C' < oo, we have

Then, by choosing

Pr (there exists i € S¢ such that u;(\) = 0)
< Pr (there exists i € S¢ such that @;(A) =0, ||5o — B|| < xnr, N >1n— Crnr,
& < Coenp, S C S> 4 Pr <||ﬁo — B> %NT) 4 Pr (& > Conr)

Y Pr(f <5 — Coyp) + Pr (s ¢ 3) (A.10)

where Pr <Hﬁo—3|] >%NT> = o(l) by Assumption 2-(2)-(i), Pr (SQ_‘S') = o(1)
by the first part of this proof, Pr(a > Csxyr) = o(l) by the fact that & <
%Zthl x;t(ﬁ0—8)+vit

and (A.1), and Pr(n < n — Csxyr) = o(1) by the fact

maxlSiSN

that
11 —n| < |0 — g + |tg, — | (A.11)
and (A.3) where ¢ =argmin;esc; and £y :argminiegcuw.ﬂ Furthermore, we have

A A A . A A
N s DA < 1-ONi Y+ 27 = 2 577 <
BNT 2 57 ] ( )N i

2ONT 2T 2T 6T

where we use the fact S¢ € 8¢ and § < 6 < 1 as S C 8. Then, for the first term in (A.10),

Note that |f —n| < |idg, —n| if ) > nand |§ —n| < | — ue if § <n.
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by combining (A.8)), (A.9) and (A.12)), we have

Pr <there exists i € 8¢ such that 4;(A\) =0, ||y — BH < zxnp, ) >n— Cryp, & < Crnr,

S C 8)
/ 1 & A .
< ZPI’ (677 — C%NT Z {Q?[]]t + U[J]t}‘ — ﬁf]i'y < O, Hﬁo — BH < XNT,
j:l t=1
0n>mn-— C%NT>
4 1 & A
< ZPr ((577 — Cuny — Z {xmt )+ 'U[]]t}‘ - 5—T(77 — Cony) 7 <0,
j:l t=1
180 — BH < %NT)
J 1 1 I
< ) br (577 — Coeny — 2Nt ( T > {apy — Elagul}|| + B ||~”Emt||> 7 > v
j=1 t=1 t=1
)\ v
5T(77 C%NT> <0
J 1 « A
S ;PI‘ (577 — O%NT — XNT (C%NT + FE Hl’th) — T ;Umt (ST(T/ C%NT) Y < O)

J T
1
—i—ZPr (HTZ{% — Elzy)}
7j=1 t=1
1 T
Nlrélizg](VPr (‘f tzlvit

> C%NT>

IN

T
1
> §RNT> + N max Pr (Hf Z{xzt — Elzy]}

1<i<N
t=1

> O%NT> (A13)

where Ry = 0n — Crxeny — sent (Coeyy + El|zal]) — %(n — Cxyr)™7. Then we can easily
show that the two terms in (A.13) are o(1) by an application of Lemmal[A.T|and the fact that
Ryt /2enT = ﬁ — C = Cont — El|zy]| — 20 seyp(1 — Coenr /)™ — 00 as (N, T) — oo

by Assumption 1 and 2. Thus, the proof is complete. B
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Proof Theorem 2 By Theorem 1, w.p.a 1, we have

S

SNT(G(\) — ap)

A .
( —i—vit)—zmiezscm

The second term is 0,(1) since

by Assumption 2-(3) and the fact that

I |
A
—_
+

=14 0,(1),

due to (A.11)) and sen7/n — 0 as (N,T) — oo by Assumption 2-(2)-(iii).
Since B — By = (sz\il ZtT:1 Tiuyy) ! Zfil ZtT:l Ty, and Zf\il Zthl Fuly =
Zﬁil 25:1 TV, we have

€S t=1
1 T | NoT -1 | NI
() (o hm) (g ) o)
€S t=1 i=1 t=1 i=1 t=1
We define
T
Ts = lim —— ;
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1 N T

N, T—o0

where Hy > 0 by Assumption 3. We split the sample into S and §¢ and define two statistics

as

SS,NT =

(STSH xlt?}lt}

€S t=1

ESC,NT = ZZ \/ TSH xltvit7
V(=46 NT@GS” 1

which are independent since the observations are cross-sectionally independent. By Assump-

tion 3, we have

[1]

d
S,NT — (0 O'S +(520'$ 2508182)

N
ESC’NT $ N( ( (5)0'?9c)

as (N, T) — oo, where

T T
05, = Np%flooﬁ Z Z Z VitVik

€S t=1 k=1
1 T T
2 / —1 : ~ ~/ —1
oe. = TGH, lim —— E TtV Tyy ¢ Hy ™ T
> o {NI’)T*OO(SNT €S tzz; k=1 s t} "
T T
; 1
o = Y. H! lim —— E Tt Vi Vs
T
1
2 oAt -1 . -
ose = TgH,; {NP}I—I&U “OINT Z;C tz:; kz_; xltvztvzka:zt} Hi ' Ts

Hence, VONT(&()) — ag) = Es.nr + Esenr — N (0,03, + 0%0%, — 20%0s,5, + 6(1 — §)o%.)
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and the desired result followsF

For the second result, for i € 8¢, we have

T

VI =) = VTGN = a0) = 2= (= B) = 7= S oua = o=k

= Uy nr + VYone + Vs + Va N,

where W) yp = O,(1/V/ON) = o0,(1) from the first result, Wo; yyo = O,(1/V/N) = 0,(1)
since 3 — B = O,(1/V/NT), and Wy n7 = 0,(1) by a similar argument as in 1) Since
Uyr 5 N(0,02) as T — oo by Assumption 3, where o2 = plimy o & 32 S0 wivs, for

each 7, we have the desired result. B

Proof of Theorem 3 We first define

AL={N:Pr(S(N)2D8) = 1as (N,T) — oo}
Ao ={\:Pr(S(A\)=8) = 1as (N,T) — oo}

Ay ={\:Pr(S(\) CS) = 1as (N,T) — oo}

2When v is conditionally homoskedastic across i, we have 0%2 = U?SC =
T:gHal {limTﬁoo T-1 Zthl 25:1 iitvitvik:ﬁ;t} Hng‘g and the limiting expression simplies to
N (0,0%, +b0%, —200s,s,)-
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similarly as Hui, Warton and Foster (2015) We denote the post-LASSO version of é()\) by

/\) the post-LASSO version of %() by 6% 500’ where

| N A )
N ZWZZ@n B—0s)

i=1 t=1

and the post-LASSO BIC by BIC()),

¢NT

BIC(\) = log 6% ) + s S“ (1.

s T

The following lemma shows that asymptotically a A that yields an over-fitted or under-

fitted model can’t be selected by BIC()).

Lemma A.2 Suppose Assumptions 1 and 2 hold and there exists A\g € Ag. Then,

Pr ( inf  BIC(\) > B_]C()\O)) — 1 as (N,T) — o0

AEA_UAL

Proof of Lemma (i) We first show Pr(infyen BIC(X) > BIC()\)) —
1 as (N,T) — co. Let A_ € A_. Since Pr(S(A_) 2 8) — 1 as (N,T) — oo, for suffi-

ciently large (N, T), we have

| NI A )
iy = WZZ(% B-bsn))

=1 t=1

3Recall Assumption 2-(3): i) AT~Y2N'/2p=7 — 0; ii) ATO~D/2(log N)™7~! — oo for some v > 1.
Theorem 1 implies that, for A € Ag, both i) and ii) must be satisfied. For A € Ay, Assumption i) is satisfied,
but not ii), that is, A is not large enough, so some zero inefficiencies are estimated as nonzero, resulting
in over-fitted models. For A € A_, ii) is satisfied, but not i), resulting in under-fitted models. In finite
samples under-fitted models include the cases where some efficient firms are estimated as inefficient, while
some inefficient firms are estimated as efficient. However, Theorem 1 and its proof imply that we can ignore
these cases asymptotically.

4These post-LASSO version estimates are simply least squares estimates given the estimated set of
efficient firms, S(A).
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where §* = S N S(A_) and & = §° N S¢(A_). Similarly, for large (N, T),

A2

Then, for large

T
1 PPN 2
Cooe = NT DD (%t — Tyl — 93<Ao>>

(N, T), it can be verified that

2
0 {5‘50) T~ 5NT Z > (#h(80 — B) v }

t=1 eS8
1 1 < 2
+N {dg(/\) —Qp + Ui — TZ (f;t(ﬁo — ) +Uit>}
€S =1
1 1 < :
N A {dg(,\ )—0404-%0—?2(17;5(5 3)4‘%)}
eS8 t=1
1 1 <« ,
N 572 >, <$it(50 —5)+Uzt> — > Uig
ieS* t=1ied(A_) icS*

16

1 A . A 2
NT Z Z (Igt(ﬁo —0) - (O‘S(,\o) - O‘0> + (%,S(,\O) - Uo,i> + Uit)
2
Uo,i> + Uit)



by the reverse triangle inequality and the fact that

9 DD DI (AT NE B 31

=1 jeS(x.) zGS*

where § = ‘S’ (A (%) is Op(1) or has the rate of n which converges to

zero slower than (kx).

Therefore, for large (N,T'), we have

T 2
A 1
A2 ~2 *
O500) ~Is0g) ~ 0 {%_211525% ;( B = 8) + ) } (A.15)
where § = min,_g. |u;0 — SLN Y ies Uio| and 5 = | S* /N
Finally, note that for any A_ € A_,
S — 6??@ ) &?ﬁ(x ) ONT ¢
BIC(A_) — BIC(\g) = log< 1+ —5 S T o
75000)
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/\2 /\2A ¢
> min {logQ SQ-) S(AO)} NT5*

2
20 S(Ao)

and log2 — @VTTg* > 0 as (N,T) — 0 due to the condition that (¢nr/T)*n~t — 0.

Therefore, to prove Pr (infyep_ BIC(A) > BIC(\g)) — 1 as (N,T) — oo, it suffice to show

262 T

52— 42 )
infres { S0-) S(Ao)} _ ONT 5 (A.16)
S(o)

is positive w.p.a.1 as (N, T) — oo.

Inequality (A.15)) implies that (A.16|) is asymptotically greater than

2 ¢
NT ¢«
} T

2

is bounded, ¥ is O,(1) or O,(n) hence asymp-

~2
S(Xo)

totically dominates max;<;<y ‘% S (:L‘Z-t(ﬁo - B)+ vit>

which is asymptotically positive since 0%

=0, (I%V) due to Assumption

LN
2-(2)-(iii), and (dw%) S — 0o by the condition that (¢y7/T)"* 5! — 0.
(ii) Next, we show Pr (infyep, BIC(A) > BIC(\g)) — 1 as (N,T) — co. Let Ay € A,.

Similarly as in (i), for large (N, T), it can be verified that

"2 > 60

~92 B ~ .
Ts0) ~ %800 = T XS0 T 0T 5ONTZZ< it J”fzt)

t=1 ;c§o

TZ< it J”’“)

2
oo N
- g oo =]+ 2
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where 6° = |S°|/N and 6°° = |S°°|/N with §° = SNS(A;) and 8°° = SN S(\,).

Therefore, to show Pr (infyep, BIC(A) > BIC()\g)) — 1 as (N,T) — oo, it suffices to

show
BIC(A) — BIC() 2 QE\ZT&OO B Ago As(n) — 0~ i ( Lit ) + vzt)
2050\0) b°NT t=1 jcgo
‘ 2
500 1 T / 2
_20‘%0\0) SN {)03(/\0) - ozo‘ + T z; (xit(ﬁo B) + Uzt) }

is positive w.p.a.1 as (N, T) — oo, which follows by the condition ¢y /(log N)? — oo since

(xx) is greater than (x), but (xx) = O, <(1°gTN) because |Gg,,) — ol = Op(\/éTT) due to
log N
=0, ()] m

Theorem 2 and maxi<;<y ‘% Zthl (:E;t(ﬂo — 5) + vit)
Next, to link the post-LASSO BIC and LASSO BIC, we show the following:

% (M) = 055, = (%) : (A.17)

Due to the shrinkage effect, we have 62()\g) — 6??(,\0)

Lemma, above, we can show that, for large (N, T),

> (, and similarly as in the proof of

6" (M) = 050, = 5{25./A\/TZ7T} NZ{2T }2

1€SC

where we use the fact that &(Ao) — ap = 555 Sors D ses (a:;t(ﬁo -3+ vit> — A D iese

SEven when [S°°| is finite so 6°° = O (4) as N — oo, we obtain the same conclusion since 6° — § in

this case, so (x) = O, (57 )-
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and (&(Xo) — o) — (ii(Ao) — uoy) = 23T, (m;t(ﬁo B+ vit> — A forie S wpalas

(N,T) — oo. Then, using the results in the proof of Theorem 2, we have

2 2
~ ~ 1 (1—6)2 NA_ 1—(5 )\ NA_ 1
2 2 / /
g ()\0> N O-S(/\O) = ]\[22 { 45 )\ T ’y} - N—Z {5 _,277 ’y} N Op (N_])

since )\\/gﬁ_7 = 0,(1).
Finally, (A.17) and the fact BIC(\) > BIC()) for any A due to shrinkage effect imply

BIC(A) — BIC(A\g) > BIC(A) — BIC(A\o) + 0, (%) ;

which gives

AEA_UA 4

Pr ( inf  BIC(\) > BIC()\O)> —1 as (N,T) — oc.

This means that asymptotically a A which yields an over-fitted or under-fitted model can’t

be chosen based on the BIC criterion, so the desired result follows. B
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B. Additional Simulations for ¢ € {0.1,0.9}

Table B.1: Estimation Accuracy: 6 = 0.1

Point estimate

RMSE (g =1) Rank correlation

(N, T) | ou| Urasso | Urspv | drasso | arspv | LASSO | LSDV

(100, 10) 1 0.4537 0.8630 1.166 1.761 0.87 0.85
(0.1765) | (0.1820) | (0.272) | (0.204) | (0.041) | (0.039)

(100, 30) 1 0.2623 0.4822 1.059 1.420 0.94 0.93
(0.0753) | (0.1056) | (0.143) | (0.121) | (0.019) | (0.019)

(100, 50) 1 0.2014 0.3675 1.034 1.318 0.96 0.95
(0.0576) | (0.0830) | (0.108) | (0.095) | (0.013) | (0.014)

(100, 70) 1 0.1733 0.3089 1.025 1.266 0.97 0.96
(0.0481) | (0.0700) | (0.095) | (0.081) | (0.011) | (0.011)

(100, 10) 4 0.4987 0.7802 1.225 1.663 0.98 0.98
(0.1918) | (0.1880) | (0.204) | (0.217) | (0.006) | (0.006)

(100, 30) 4 0.2818 0.4585 1.103 1.390 0.99 0.99
(0.1003) | (0.1174) | (0.168) | (0.138) | (0.003) | (0.003)

(100, 50) | 4 0.2136 0.3528 1.063 1.297 0.99 0.99
(0.0711) | (0.0914) | (0.124) | (0.107) | (0.002) | (0.002)

(100, 70) 4 0.1722 0.2914 1.041 1.245 1.00 1.00
(0.0453) | (0.0713) | (0.089) | (0.084) | (0.001) | (0.001)

(200, 10) 1 0.4011 0.9625 1.025 1.874 0.89 0.85
(0.0627) | (0.1703) | (0.153) | (0.185) | (0.029) | (0.026)

(200, 70) 1 0.1661 0.3502 0.985 1.313 0.97 0.96
(0.0191) | (0.0675) | (0.053) | (0.075) | (0.008) | (0.008)

(200, 10) 4 0.4327 0.8770 1.122 1.779 0.98 0.98
(0.0743) | (0.1721) | (0.178) | (0.193) | (0.004) | (0.004)

(200, 70) | 4 0.1614 0.3353 1.017 1.295 1.00 1.00
(0.0187) | (0.0708) | (0.057) | (0.08) | (0.001) | (0.001)

(400, 10) 1 0.4168 1.0597 0.920 1.981 0.91 0.85
(0.0399) | (0.1713) | (0.086) | (0.184) | (0.021) | (0.018)

(400, 70) 1 0.1794 0.3868 0.952 1.353 0.97 0.96
(0.0217) | (0.0643) | (0.039) | (0.070) | (0.005) | (0.005)

(400, 10) | 4 0.4097 0.9973 1.045 1.911 0.98 0.98
(0.0376) | (0.1728) | (0.123) | (0.188) | (0.003) | (0.003)

(400, 70) 4 0.1577 0.3799 0.999 1.346 1.00 1.00
(0.0103) | (0.0668) | (0.039) | (0.073) | (0.001) | (0.001)

(1000, 10) | 1 0.4792 1.1787 0.822 2.108 0.93 0.85
(0.0430) | (0.1546) | (0.057) | (0.164) | (0.014) | (0.011)

(1000, 10) | 4 0.4158 1.1115 0.970 2.037 0.99 0.98
(0.0276) | (0.1612) | (0.081) | (0.171) | (0.002) | (0.002)

21



Table B.2: Estimation Accuracy: 6 = 0.9

Point estimate

RMSE (g =1) Rank correlation

(N, T) | ou| Urasso | Urspv | drasso | érspv | LASSO | LSDV

(100, 10) 1 0.2772 1.0699 1.175 1.994 0.84 0.81
(0.1068) | (0.1713) | (0.144) | (0.184) | (0.133) | (0.151)

(100, 30) 1 0.1415 0.6292 1.057 1.582 0.91 0.89
(0.0458) | (0.0996) | (0.153) | (0.107) | (0.090) | (0.099)

(100, 50) 1 0.1046 0.4901 1.018 1.455 0.94 0.92
(0.0368) | (0.0769) | (0.186) | (0.082) | (0.068) | (0.076)

(100, 70) 1 0.0886 0.4137 0.985 1.383 0.95 0.93
(0.0404) | (0.0640) | (0.228) | (0.069) | (0.053) | (0.056)

(100, 10) 4 0.2744 1.0646 1.174 1.988 0.96 0.96
(0.1062) | (0.1736) | (0.120) | (0.186) | (0.038) | (0.039)

(100, 30) | 4 0.1382 0.6229 1.076 1.577 0.98 0.98
(0.0461) | (0.0975) | (0.056) | (0.104) | (0.026) | (0.027)

(100, 50) 4 0.0980 0.4889 1.049 1.455 0.98 0.98
(0.0323) | (0.0753) | (0.039) | (0.080) | (0.018) | (0.019)

(100, 70) 4 0.0799 0.4138 1.037 1.384 0.99 0.99
(0.0249) | (0.0660) | (0.031) | (0.071) | (0.018) | (0.018)

(200, 10) 1 0.1991 1.1702 1.088 2.099 0.89 0.83
(0.0439) | (0.1619) | (0.064) | (0.170) | (0.075) | (0.084)

(200, 70) 1 0.0683 0.4496 1.013 1.422 0.96 0.95
(0.0164) | (0.0598) | (0.067) | (0.063) | (0.028) | (0.032)

(200, 10) 4 0.1992 1.1657 1.091 2.095 0.97 0.97
(0.0441) | (0.1621) | (0.061) | (0.172) | (0.019) | (0.020)

(200, 70) 4 0.0628 0.4488 1.015 1.420 0.99 0.99
(0.0117) | (0.0575) | (0.017) | (0.061) | (0.007) | (0.007)

(400, 10) 1 0.1718 1.2552 1.046 2.190 0.91 0.84
(0.0205) | (0.1504) | (0.036) | (0.158) | (0.048) | (0.058)

(400, 70) 1 0.0656 0.4800 1.008 1.454 0.97 0.96
(0.0069) | (0.0573) | (0.011) | (0.060) | (0.017) | (0.020)

(400, 10) 4 0.1727 1.2531 1.050 2.187 0.98 0.98
(0.0221) | (0.1502) | (0.035) | (0.159) | (0.010) | (0.011)

(400, 70) 4 0.0591 0.4802 1.007 1.454 1.00 0.99
(0.0068) | (0.0567) | (0.010) | (0.060) | (0.003) | (0.003)

(1000, 10) | 1 0.1674 1.3605 1.016 2.301 0.93 0.85
(0.0112) | (0.1436) | (0.021) | (0.150) | (0.026) | (0.035)

(1000, 10) | 4 0.1641 1.3736 1.023 2.314 0.99 0.98
(0.0112) | (0.1461) | (0.019) | (0.152) | (0.005) | (0.005)

22



(ceve0) | (2e10°0) | (6170°0) | (FFT0°0) | (92¥2'0) | (F210°0) | (8950°0) | (PG10°0) | (SL12°0) | (6810°0) | (GL90°0) | (FST0O0)
6611 ¥688°0 | TIVES0 | 16960 €121 66680 | TV0L0 | 0960 | LL0T'T 8616°0 | 06050 | 62960 | (0T ‘000T)
(e1er'0) | (9620°0) | (8950°0) | (zz¥0°0) | (g¥¥1°0) | (26£0°0) | (8¢L0°0) | (60%0°0) | (¢0¢T'0) | (6¥¥0°0) | (FF11°0) | (62F0°0)
C9GT'0 | 0%98°0 | 8.66°0 | 60560 | 9,20 | ¥¥98°0 | I¥SS0 | 9,60 | 62820 | ¥,98°0 | @680 | ¥0¥6°0 | (0L ‘002)
(cove'0) | (20L0°0) | (¥GL0°0) | (8720°0) | (Tg0€0) | (F7L0°0) | (G€0T°0) | (9920°0) | (2292°0) | (98L0°0) | (GLe1°0) | (1220°0)
12L7°0 | 066L°0 | 2888°0 | €580 | €019°0 | 8€08°0 | OF6L0 | €0.80 | ¥¥L9°0 | 8.18°0 | 10990 | 26980 | (0T ‘002)
(cL01°0) | (L980°0) | (2890°0) | (L¥60°0) | (48¢T°0) | (2160°0) | (G£60°0) | (92.60°0) | (8082°0) | (6660°0) | (2612°0) | (8,60°0)
L£90°0 ZI6L°0 | ©€S6°0 | 6€£.8°0 | 6ITI0 | SI6L0 | 6060 | L6980 1€02°0 | 0£08°0 | 2908°0 | 20,80 | (0L ‘00T)
(9621°0) | (0260°0) | (6£20°0) | (260T°0) | (GL¥T°0) | (9960°0) | (1660°0) | (Le01°0) | (0TFT'0) | (FFOT'0) | (€€61°0) | (0SOT0)
7080°0 G9.L°0 | L9¥6°0 | 8998°0 | @lZT'0 | €L..°0 | 8¥06'0 | 0£S8°0 | 81230 IP8L°0 | <€6L°0 | €8¥8°0 | (0S ‘00T)
(2go1'0) | (L601°0) | (0£200) | (z611°0) | (L¥8T°0) | (ce1T°0) | (2901°0) | (022T°0) | (982z'0) | (291T°0) | (96L1°0) | (S8STT°0)
LITT0 | SPPL'0 | €866°0 | L0280 | 6SLT°0 | 6SFL°0 | L988°0 | OVISO0 | @9¥c0 | Llgsl0 | we6L0 | ve18'0 | (0g ‘001)
(8282°0) | (€6€1°0) | (£880°0) | (¢16T°0) | (£682°0) | (0L¥1°0) | (0L81°0) | (F9sT°0) | (¥6L5°0) | (0g¥T°0) | (1FL1°0) | (SOFT0)
€602°0 2189°0 | 2TT60 | T8VL0 | €¥6T0 | 03,90 | SGG80 | 90€L0 | L6LE0 G689°0 | 89¥L°0 | 08€L0 | (0T ‘00T)
60=2¢
(0zzz0) | (¥620°0) | (9220°0) | (2960°0) | (1961°0) | (80¥0°0) | (81¥0°0) | (61%0°0) | (500z°0) | (¢6¥0°0) | (1£50°0) | (2S20°0)
70631 J86T°0 | 68.8°0 | 7,68°0 | SIFVI 60280 | TLFL0 | 9€66°0 | 88€G'T PFes0 | 9¢1¢0 | 09960 | (0T ‘000T)
(9¢21°0) | (8820°0) | (F2z00) | (L121°0) | (1911°0) | (02¥0°0) | (92£0°0) | (2e11°0) | (g201°0) | (6650°0) | (L850°0) | (¥860°0)
0TI€0 | 89210 | 0SS6°0 | 0£98°0 169¢°0 | ¥991°0 | LT16'0 | 06980 | SII¥F0 | 09¥¢0 | 26280 | €1680 | (0L ‘002)
(200€°0) | (6050°0) | (12¥0°0) | (¢891°0) | (#262°0) | (05L0°0) | (L590°0) | (8¥91°0) | (L&¥2°0) | (6101°0) | (€101°0) | (FOFT0)
066.°0 | €.71°0 | 16160 | ¥¥FL0 | L€06°0 | L6IZ0 | 9IFR0 | €1LL0 | S666°0 | 6,560 | €£69°0 | 98180 | (0T ‘002)
(88¢1°0) | (92£0°0) | (¥820°0) | (1621°0) | (¢8z1°0) | (F€c0°0) | (1¥F0°0) | (1661°0) | (8621°0) | (16L0°0) | (0£20°0) | (6481°0)
8FIZ0 | €911°0 | 90960 | 2808°0 | S292°0 | ¥.¥I'0 | 9¥g6°0 | ©96L°0 | €€I€0 | 08020 | G880 | 9908°0 | (0L ‘001)
(80LT°0) | (8¢¥0°0) | (81€0°0) | (£802°0) | (#65T°0) | (9090°0) | (L6¥0°0) | (1212°0) | (L&¥1°0) | (1280°0) | (69L0°0) | (9161°0)
9762 0 19TT°0 | €660 | 19220 | STI€0 | 06¥I'0 | I6160 | S29.0 | 659¢0 | 20220 | 1€¥80 | <¥6,0 | (0S ‘001)
(1202°0) | (¢6¥0°0) | (09€0°0) | (z0€z°0) | (920%°0) | (1890°0) | (6950°0) | (cLzz'0) | (€681°0) | (6L60°0) | (9160°0) | (¥£0T0)
022£°0 GLIT'0 | 60S6°0 | €2€L°0 | T86E0 TLST'0 | 99060 | 02€L0 | ¥69%'0 | ¥8¢T0 | L6180 | ©19.°0 | (0g ‘001)
(982€°0) | (2650°0) | (L¥#0°0) | (¢9¥2°0) | (08€e'0) | (6880°0) | (€9L0°0) | (9052°0) | (800€°0) | (1¥2T°0) | (GL11°0) | (29€2°0)
8€9C°0 | LGTT0 | 2E€L6°0 | L9S9°0 | 99€9°0 | 0TLI0 | S0880 | 8e€F90 | ¥9eL0 | 9220 | 62LL0 | 2’9o | (01 ‘001)
T'0=2¢
sstu-xepy | @ S Sd | sswuxepy | g S Sd | sswuxepy | o S Sd (LN
<WH§.Q <NH§|Q <ﬂH§b

A2eIMdoy UOIP99[9G :¢°¢] 9[qRT,

23



