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Section S.1 contains proofs of the technical lemmas and the corollary; Section S.2

derives limiting distributions when linear trend exists; Section S.3 provides simulation

results; Section S.4 includes additional results and tables of the empirical studies on

crime rates.

S.1 Proof of Lemmas

Proof of Lemma B1 Recall et = ξt + x∗t , where x
∗
t = n−1

∑n
i=1(µit

−κ1 + ϵit + εitt
−κ2) =

µt−κ1 + ϵt + εtt
−κ2 . We decompose δ̂ − δ as

δ̂ − δ =

(
T∑
t=1

θ̃tθ̃
′
t

)−1 T∑
t=1

θ̃tet = A−1
5,T (A1,T + A2,nT + A3,nT + A4,nT ) ,

where

A1,T =
T∑
t=1

θ̃tξt, A2,nT = µ
T∑
t=1

θ̃tt
−κ1 , A3,nT =

T∑
t=1

θ̃tϵt, A4,nT =
T∑
t=1

θ̃tεtt
−κ2 , A5,T =

T∑
t=1

θ̃tθ̃
′
t.

When ξt ∼ I(0), under Assumptions 1 and 2, combining the functional central limit theorem

with the continuous mapping theorem (e.g., Park and Phillips (1988)), we have

1

T
A1,T ⇒

∫ 1

0

B̃θ (r) dBξ (r)

as T → ∞. Similarly, by Lemma 3.1 of Chang, Park, and Phillips (2001),

√
n

T (3/2)−κ1
A2,nT =

√
nµ · 1

T (3/2)−κ1

T∑
t=1

θ̃tt
−κ1 = Op (1)
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as n, T → ∞, where µ = Op(n
−1/2) and

∫ 1

0
r−κ1dr = 1/(1 − κ1) < ∞ as we assume κ1 ∈

(0, 1/2). By Theorem 16 of Phillips and Moon (1999),

√
n

T
A3,nT =

1√
n

n∑
i=1

{
1√
T

T∑
t=1

θt√
T
ϵit −

1

T

T∑
t=1

θt√
T

· 1√
T

T∑
t=1

ϵit

}
= Op (1)

and similarly

√
n

T 1−κ2
A4,nT =

1√
n

n∑
i=1

{
1√
T

T∑
t=1

θt√
T
εit

(
t

T

)−κ2
− 1

T

T∑
t=1

θt√
T

· 1√
T

T∑
t=1

εit

(
t

T

)−κ2
}

= Op (1)

for κ2 ∈ (0, 1/2). Noting that

1

T 2
A5,T ⇒

∫ 1

0

B̃θ (r) B̃θ (r)
′ dr,

we thus have

T (δ̂ − δ) ⇒
(∫ 1

0

B̃θ (r) B̃θ (r)
′ dr

)−1 ∫ 1

0

B̃θ (r) dBξ (r)

as n, T → ∞ because it is assumed that n/T → ∞. When ξt ∼ I(1), under Assumptions 1

and 3, A1,T dominates all other terms in the numerator, where

1

T 2
A1,T ⇒

∫ 1

0

B̃θ (r)Bξ (r) dr

and hence the desired result follows. □

Proof of Lemma B2 First note that

Sn,t =
1

n

n∑
i=1

(
−(δ̂ − δ)′θt + ξt + xit

)2
, (S.1)

where xit = αi + x∗it. When ξt ∼ I(1), δ̂ − δ = Op(1) from Lemma B1 and the term

−(δ̂ − δ)′θt + ξt dominates xit in (S.1). It follows that

1

T 3
ZnT (r) =

1

T 3

[Tr]∑
t=1

t̃

{(
ξt − (δ̂ − δ)′θt

)2
− 1

T

T∑
s=1

(
ξs − (δ̂ − δ)′θs

)2}
+ op (1) .
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Note that

1

T 3

[Tr]∑
t=1

t̃
(
ξt − (δ̂ − δ)′θt

)2
⇒

∫ r

0

s̃ (Bξ (s)−D′
δBθ (s))

2
ds

1

T 3

[Tr]∑
t=1

t̃ · 1
T

T∑
s=1

(
ξs − (δ̂ − δ)′θs

)2
⇒

∫ r

0

s̃ds

∫ 1

0

(Bξ (s)−D′
δBθ (s))

2
ds,

where

Dδ =

(∫ 1

0

B̃θ (ν) B̃θ (ν)
′ dν

)−1 ∫ 1

0

B̃θ (ν)Bξ (ν) dν

from Lemma B1. The desired result follows since

Bξ (s)−D′
δBθ (s)

= Bξ (s)−
∫ 1

0

Bξ (ν) B̃θ (ν)
′ dν

(∫ 1

0

B̃θ (ν) B̃θ (ν)
′ dν

)−1

Bθ (s)

= ωξW1 (s)− ωξ

∫ 1

0

W1 (ν) W̃m (ν)′ dνΩ
1/2
θ

(
Ω

1/2
θ

∫ 1

0

W̃m (ν) W̃m (ν)′ dνΩ
1/2
θ

)−1

Ω
1/2
θ Wm (s)

= ωξV (s)1/2

from (B.1). □

Proof of Lemma B3 From the supplementary proof below, it can be verified that the

leading terms of ZnT (r) are given as

ZnT (r) =

[Tr]∑
t=1

t̃

(
ξ2t −

1

T

T∑
s=1

ξ2s

)
+

1

n

n∑
i=1

µ2
i

[Tr]∑
t=1

t̃

{
t−2κ1 − 1

T

T∑
s=1

s−2κ1

}

+
1

n

n∑
i=1

[Tr]∑
t=1

t̃

{
ε2itt

−2κ2 − 1

T

T∑
s=1

ε2iss
−2κ2

}
+ op

(
max{T 3/2, T 2−2κ∗}

)
= C1,T (r) + C2,nT (r) + C3,nT (r) + op

(
max{T 3/2, T 2−2κ∗}

)
, (S.2)

where κ∗ = min{κ1, κ2}. For C1,T (r), with Eξ2t = σ2
ξ <∞, we have

1

T 3/2
C1,T (r) =

1

T 3/2

[Tr]∑
t=1

t̃

{(
ξ2t − σ2

ξ

)
− 1

T

T∑
s=1

(
ξ2s − σ2

ξ

)}
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=
1

T 3/2

[Tr]∑
t=1

t̃
(
ξ2t − σ2

ξ

)
− 1

T 2

[Tr]∑
t=1

t̃ · 1√
T

T∑
s=1

(
ξ2s − σ2

ξ

)
⇒

∫ r

0

s̃dBξξ(s)−
∫ r

0

s̃dsBξξ(1)

= ωξξ

∫ r

0

s̃dB(s), (S.3)

whereBξξ(s) = ωξξW (s) with the standard Brownian motionW (s) and B(s) = W (s)−sW (1)

is the Brownian bridge. For C2,nT (r), note that

1

T 2−2κ1

[Tr]∑
t=1

t̃

{
t−2κ1 − 1

T

T∑
s=1

s−2κ1

}
→
∫ r

0

(
s− 1

2

)(
s−2κ1 − 1

1− 2κ1

)
ds = q (κ1; r) <∞

for κ1 ∈ (0, 1/2), and hence

1

T 2−2κ1
C2,nT (r)

p→ σ2
µq (κ1; r) ,

where Eµ2
i = σ2

µ <∞. For C3,nT (r), as Eε2it = σ2
ε,i <∞ for each i, note that

[Tr]∑
t=1

t̃

{
ε2itt

−2κ2 − 1

T

T∑
s=1

ε2iss
−2κ2

}

=

[Tr]∑
t=1

t̃

{(
ε2it − σ2

ε,i

)
t−2κ2 − 1

T

T∑
s=1

(
ε2is − σ2

ε,i

)
s−2κ2

}
+ σ2

ε,i

[Tr]∑
t=1

t̃

{
t−2κ2 − 1

T

T∑
s=1

s−2κ2

}
= Op

(
T (3/2)−2κ2

)
+Op

(
T 2−2κ2

)
by Lemma 3.1 of Chang, Park, and Phillips (2001). It follows that

1

T 2−2κ2
C3,nT (r) = Op(T

−1/2) +
1

n

n∑
i=1

σ2
ε,i ·

1

T 2−2κ2

[Tr]∑
t=1

t̃

{
t−2κ2 − 1

T

T∑
s=1

s−2κ2

}
= σ2

εq (κ2; r) + op(1),

where limn→∞ n−1
∑n

i=1 σ
2
ε,i = σ2

ε < ∞. Under n/T → ∞, the desired results follow by

combining these three terms and verifying the leading terms for each case. □

Proof of (S.2) in Lemma B3 When ξt ∼ I(0), δ̂ − δ = Op(T
−1) from Lemma B1 and

the term ξt + xit dominates (δ̂ − δ)′θt in (S.1). Therefore, the leading terms of ZnT (r) are
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given as

1

n

n∑
i=1

[Tr]∑
t=1

t̃

{
(ξt + xit)

2 − 1

T

T∑
s=1

(ξs + xis)
2

}

=

[Tr]∑
t=1

t̃

{
ξ2t −

1

T

T∑
s=1

ξ2s

}
+ 2

[Tr]∑
t=1

t̃

{
ξtxt −

1

T

T∑
s=1

ξsxs

}
+

1

n

n∑
i=1

[Tr]∑
t=1

t̃

{
x2it −

1

T

T∑
s=1

x2is

}
= Z1,T (r) + 2Z2,nT (r) + Z3,nT (r) ,

where xt = n−1
∑n

i=1 xit. The first term Z1,T (r) is the same as C1,T (r) in (S.3) in the proof

of Lemma B3 and hence Z1,T (r) = Op(T
3/2).

For the second term Z2,nT (r), since xt = α + µt−κ1 + ϵt + εtt
−κ2 ,

Z2,nT (r) =

[Tr]∑
t=1

t̃ξ̃tα +

[Tr]∑
t=1

t̃ ˜(ξtt−κ1)µ+

[Tr]∑
t=1

t̃(̃ξtϵt) +

[Tr]∑
t=1

t̃ ˜(ξtεtt−κ2)

= Op

(
n−1/2T 3/2 + n−1/2T 3/2−κ1 + n−1/2T 3/2 + n−1/2T 3/2−κ2

)
.

The first two elements are obtained similarly as Z1,T (r) for

n1/2

T 3/2

[Tr]∑
t=1

t̃ξ̃tα =
1

T 3/2

[Tr]∑
t=1

t̃ξ̃t ·
√
nα = Op (1)

n1/2

T 3/2−κ1

[Tr]∑
t=1

t̃(ξ̃tt−κ1)µ =
1

T 3/2−κ1

[Tr]∑
t=1

t̃(ξ̃tt−κ1) ·
√
nµ = Op (1) ,

where Eαi = Eµi = Eξt = 0, κ1 ∈ (0, 1/2). The rest two elements are similarly obtained

from Theorem 16 of Phillips and Moon (1999) because

n1/2

T 3/2

[Tr]∑
t=1

t̃(ξ̃tϵt) =
1√
n

n∑
i=1

1

T 3/2

[Tr]∑
t=1

t̃(ξ̃tϵit) = Op (1)

n1/2

T 3/2−κ2

[Tr]∑
t=1

t̃( ˜ξtεtt−κ2) =
1√
n

n∑
i=1

1

T 3/2−κ2

[Tr]∑
t=1

t̃( ˜ξtεitt−κ2) = Op (1)

for Eξtϵit = Eξtεit = 0 and κ2 ∈ (0, 1/2).

For the third term Z3,nT (r), since x
2
it = α2

i +µ2
i t

−2κ1 + ϵ2it+ ε2itt
−2κ2 +2(αiµit

−κ1 +αiϵit+
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αiεitt
−κ2 + µiϵitt

−κ1 + µiεitt
−κ1−κ2 + ϵitεitt

−κ2), a similar derivation yields

Z3,nT (r) =

[Tr]∑
t=1

t̃(t̃−2κ1) · 1
n

n∑
i=1

µ2
i +

1

n

n∑
i=1

[Tr]∑
t=1

t̃ ˜(ϵ2it − σ2
ε,i) +

1

n

n∑
i=1

[Tr]∑
t=1

t̃ ˜(t−2κ2ε2it)

+2

[Tr]∑
t=1

t̃(t̃−κ1) · 1
n

n∑
i=1

αiµi +
2

n

n∑
i=1

[Tr]∑
t=1

t̃ϵ̃itαi +
2

n

n∑
i=1

[Tr]∑
t=1

t̃ ˜(t−κ2εit)αi

+
2

n

n∑
i=1

[Tr]∑
t=1

t̃ ˜(t−κ1ϵit)µi +
2

n

n∑
i=1

[Tr]∑
t=1

t̃ ˜(t−κ1−κ2εit)µi +
2

n

n∑
i=1

[Tr]∑
t=1

t̃ ˜(t−κ2ϵitεit)

= Op

(
T 2−2κ1 + n−1/2T 3/2 + T 2−2κ2

)
+Op

(
n−1/2T 2−κ1 + n−1/2T 3/2 + n−1/2T 3/2−κ2

)
+Op

(
n−1/2T 3/2−κ1 + n−1/2T 3/2−κ1−κ2 + n−1/2T 3/2−κ2

)
as κ1, κ2 ∈ (0, 1/2), Eαiµi = Eϵitεit = 0, Eµ2

i < ∞, and limn→∞ n−1
∑n

i=1 σ
2
ε,i < ∞ with

σ2
ε,i = Eε2it. Note that the first and the third elements of Z3,nT (r) are respectively the same

as C2,nT (r) = Op (T
2−2κ1) and C3,nT (r) = Op (T

2−2κ2) in the proof of Lemma B3.

The desired result follows because n/T → ∞ yields that the dominating terms are

Z1,T (r) = Op(T
3/2) and the first Op (T

2−2κ1) and the third Op (T
2−2κ2) elements of Z3,nT (r)

for any κ1, κ2 ∈ (0, 1/2). □

Proof of Lemma B4 Since

ϕ̂ =
ZnT (1)∑T
t=1(t̃)

2

and T−3
∑T

t=1(t̃)
2 → 1/12, the results readily follows from Lemma B2 for the case ξt ∼ I(1).

When ξt ∼ I(0), note that∫ 1

0

s̃dB (s) =

∫ 1

0

s̃dW (s) ∼ N
(
0,

1

12

)
(S.4)

as
∫ 1

0
s̃ds = 0. The results follow from Lemma B3 since q (κ; 1) = −κ/{2 (1− κ) (1− 2κ)}

and q (1/4; 1) = −1/3. □
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Proof of Lemma B5 Recall ût = S̃nt − ϕ̂t̃. Lemmas B2 and B4-(i) yield that

1

T 3

[Tr]∑
t=1

t̃ût =
1

T 3

[Tr]∑
t=1

t̃S̃nt − ϕ̂ · 1

T 3

[Tr]∑
t=1

(t̃)2

⇒ ω2
ξ

∫ r

0

s̃Ṽ (s) ds− 12ω2
ξ

∫ 1

0

ν̃Ṽ (ν) dν ·
∫ r

0

(s̃)2 ds

= ω2
ξ

∫ r

0

s̃

{
Ṽ (s)− s̃

(∫ 1

0

(ν̃)2 dν

)−1 ∫ 1

0

ν̃Ṽ (ν) dν

}
ds

= ω2
ξ

∫ r

0

s̃V τ (s) ds

for
∫ 1

0
(ν̃)2 dν = 1/12 and hence

T−6ΨnT (b) =
1

T 6

T∑
t=1

T∑
s=1

K

(
t− s

Tb

)(
ûtt̃
)
(ûss̃)

⇒ ω4
ξ

∫ 1

0

∫ 1

0

K

(
r − s

b

)
r̃s̃V τ (r)V τ (s) drds

using similar steps as Sun (2004). □

Proof of Lemma B6 When min{κ1, κ2} > 1/4, Lemmas B3-(i) and B4-(ii) yield that

1

T 3/2

[Tr]∑
t=1

t̃ût =
1

T 3/2

[Tr]∑
t=1

t̃S̃nt − T 3/2ϕ̂ · 1

T 3

[Tr]∑
t=1

(t̃)2

⇒ ωξξ

∫ r

0

s̃dB (s)− 12ωξξ

∫ 1

0

ν̃dB (ν) ·
∫ r

0

(s̃)2 ds

= ωξξ

∫ r

0

s̃

{
dB (s)− s̃ds

(∫ 1

0

(ν̃)2 dν

)−1 ∫ 1

0

ν̃dB (ν)

}

= ωξξ

∫ r

0

s̃dW τ (s)

whereW τ (r) is the second-level Brownian bridge (e.g., MacNeill (1978)) defined asW τ (r) =

W (r)− rW (1)+6r(1− r){(1/2)W (1)−
∫ 1

0
W (s)ds}, which is the linearly L2[0, 1] demeaned

and detrended standard Brownian motion. Note that

dB (s)− s̃ds

(∫ 1

0

(ν̃)2 dν

)−1 ∫ 1

0

ν̃dB (ν)
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= dW (s)− dsW (1)−
(
s− 1

2

)
ds12

∫ 1

0

(
ν − 1

2

)
dW (ν)

= dW (s)− dsW (1)−
(
s− 1

2

)
ds12

{
W (1)−

∫ 1

0

W (ν)dν − 1

2
W (1)

}
= dW (s)− dsW (1) + 6 (1− 2s) ds

{
1

2
W (1)−

∫ 1

0

W (ν)dν

}
= dW τ (s)

from (S.4) and using the integration by parts. Hence,

T−3ΨnT (b) =
1

T 3

T∑
t=1

T∑
s=1

K

(
|t− s|
Tb

)(
ûtt̃
)
(ûss̃)

⇒ ω2
ξξ

∫ 1

0

∫ 1

0

K

(
t− s

b

)
r̃s̃dW τ (r) dW τ (s)

similarly as Kiefer and Vogelsang (2005).

When min{κ1, κ2} = 1/4, we consider the case κ1 = 1/4 < κ2; other cases can be

obtained by the same derivation. From Lemmas B3-(ii) and B4-(ii), we have

1

T 3/2

[Tr]∑
t=1

t̃ût ⇒
{
ωξξ

∫ r

0

s̃dB (s) + σ2
µq (1/4; r)

}
−
{
12ωξξ

∫ 1

0

ν̃dB (ν)− 4σ2
µ

}∫ r

0

(s̃)2 ds

= ωξξ

∫ r

0

s̃dW τ (s) + σ2
µ

∫ r

0

s̃
(
(̃s−1/2) + 4s̃

)
ds

= ωξξ

∫ r

0

s̃

{
dW τ (s) +

σ2
µ

ωξξ

(
s−1/2 + 4s− 4

)
ds

}
,

where q (1/4; r) =
∫ r
0
s̃(̃s−1/2)ds and

∫ 1

0
ν−1/2dν = 2. It hence yields the desired result as

above.

Finally, when min{κ1, κ2} < 1/4, we also consider the case when κ1 < κ2. From Lemmas

B3-(iii) and B4-(ii), we have

1

T 2−2κ1

[Tr]∑
t=1

t̃ût =
1

T 2−2κ1

[Tr]∑
t=1

t̃S̃nt − T 1+2κ1ϕ̂ · 1

T 3

[Tr]∑
t=1

(t̃)2

p→ σ2
µ

∫ r

0

s̃(̃s−2κ1)ds+
6κ1σ

2
µ

(1− κ1)(1− 2κ1)

∫ r

0

(s̃)2 ds
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= σ2
µ

∫ r

0

s̃

{
s−2κ1 +

6κ1s− (1 + 2κ1)

(1− κ1) (1− 2κ1)

}
ds.

The desired result follows similarly as above. □

Proof of Corollary 1 Let ZiT (r) =
∑[Tr]

t=1 t̃∆̃it. When ξt ∼ I(0), similarly as in the proof

of Lemma B3, the dominant terms of ZiT (r) can be obtained as

ZiT (r) =

[Tr]∑
t=1

t̃ ˜(ξt + ϵit)2 + 2αi

[Tr]∑
t=1

t̃ ˜(ξt + ϵit) + µ2
i

[Tr]∑
t=1

t̃(̃t−2κ1)

+2αiµi

[Tr]∑
t=1

t̃(̃t−κ1) + op(min{T 3/2, T 2−2κ1 , T 2−κ1})

= ZiT,1(r) + ZiT,2(r) + ZiT,3(r) + ZiT,4(r) + op(min{T 3/2, T 2−2κ1 , T 2−κ1})

= Op

(
T 3/2

)
+ 2αiOp

(
T 3/2

)
+ µ2

iOp

(
T 2−2κ1

)
+ 2αiµiOp

(
T 2−κ1

)
. (S.5)

If αiµi ̸= 0 and |αiµi| < ∞ a.s., the dominant term of ZiT (r) becomes ZiT,4(r), from

which

T 1+κ1φ̂i =

(
1

12

)−1

2αiµi

∫ 1

0

ν̃ (̃ν−κ1)dν + op (1) =
−12κ1αiµi

(1− κ1)(2− κ1)
+ op (1)

and

1

T 2−κ1

[Tr]∑
t=1

t̃ûit = 2αiµi

{∫ r

0

s̃(̃s−κ1)ds− 12

∫ 1

0

ν̃ (̃ν−κ1)dν

∫ r

0

(ν̃)2 dν

}
+ op(1)

=
αiµif (r, κ1)

(1− κ1)(2− κ1)
+ op(1),

where f (r;κ) = κ(4r3 − 6r2 + 3r)− (2− κ)(r2 − r + r1−κ) + 2(1− κ)r2−κ. Therefore,

1

T 2(2−κ1)

T∑
t=1

T∑
s=1

K

(
|t− s|
Tb

)(
t̃ûit
)
(s̃ûis)

=

(
αiµi

(1− κ1)(2− κ1)

)2 ∫ 1

0

∫ 1

0

K

(
r − s

b

)
f (r;κ1) f (s;κ1) drds+ op(1)
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and hence

Tφi
(b) =

T 1+κ1φ̂i{(
1
T 3

∑T
t=1

(
t̃
)2)2 1

T 2(2−κ1)

∑T
t=1

∑T
s=1K

(
|t−s|
Tb

) (
t̃ûit
)
(s̃ûis)

}1/2

=
−κ1sgn (αiµi){∫ 1

0

∫ 1

0
K
(
r−s
b

)
f (r;κ1) f (s;κ1) drds

}1/2
+ op (1) , (S.6)

where sgn(c) = 1{c > 0} − 1{c < 0}.
If αiµi = 0 a.s., the dominant terms of ZiT (r) are different depending on the values of αi

and µi. First, if αi = 0 and µi ̸= 0 a.s., ZiT,1(r) and ZiT,3(r) terms in (S.5) are dominant for

κ1, κ2 ∈ (0, 1/2). In this case, conditional on µi, we can derive
T 3/2φ̂i ⇒ N (0, 12ω2

i ) if κ1 < 1/4

T 3/2φ̂i ⇒ N (−4µ2
i , 12ω

2
i ) if κ1 = 1/4

T 1+2κ1φ̂i
p→ −6κ1

(1−κ1)(1−2κ1)
µ2
i if κ1 > 1/4

similarly as Lemma B4, where ω2
i is the long-run variance of (ξt + ϵit)

2, and the limit of∑[Tr]
t=1 t̃ûit is obtained as in Lemma B6 with replacing λ(r) and λ∗(r) by

(
4r + r−1/2 − 4

)
µ2
i

and c(κ1; r)µ
2
i , respectively. From these two results, we can derive the limit of Tφi

(b) as

in Theorems 1 and 2, which yields a very similar form as that of Tϕ(b): F0(b), negatively-

shifted F0(b), or a negative degenerating point that only depends on κ1. Second, if αi ̸= 0

and µi = 0 a.s., ZiT,1(r) + ZiT,2(r) are dominant for any κ1, κ2 ∈ (0, 1/2), and we can derive

that Tφi
(b) ⇒ F0(b) as T → ∞, whether ∆it is negatively associated with t or unassociated

with t. Finally, if αi = µi = 0 a.s., ZiT,1(r) term is dominant for any κ1, κ2 ∈ (0, 1/2), and

we can derive the identical results as the second case.

When ξt ∼ I(1), the dominant terms of ZiT (r) are the same as those in Lemma B2, and

hence the limiting distribution remains the same. □

This corollary shows that, when ξt ∼ I(0) and αiµi = 0 a.s., Tφi
(b) converges to F0(b),

negatively-shifted F0(b), or a negative point given in (23). Unlike Tϕ(b), however, it can

converge to F0(b) for any κ1 ∈ (0, 1/2) if µi = 0. Hence, Tφi
(b) cannot fully distinguish the

case when ∆it is negatively associated with t from the case when ∆it is unassociated with

t. On the other hand, when αiµi > 0 a.s., a direct calculation yields that the limit of Tφi
(b)
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in (S.6) ranges [−25.91,−15.03] over 0 < κ1 < 1/2 for b = 0.1, [−19.50,−10.96] for b = 0.2,

[−16.37,−9.25] for b = 0.3, [−14.57,−8.26] for b = 0.4, which are far below the degenerating

point given in (23). Based on these findings and from the fact that we consider the one-sided

test, we use the fist-stage test critical value c1 = −1.2 for our empirical analysis, which is

near the 10% percentile of F1(b), whether αiµi > 0 or αiµi < 0 a.s.

S.2 Limiting Distributions when Linear Trends Exist

Nonstationary variables often exhibit linear trends, which can be modeled using a random

walk process with a drift term. As we discussed in Remark 3, we suppose the nonstationary

common trend τt satisfies

τt = τt−1 + cτ + ετ,t = cτ t+ ζτ,t (S.7)

for some cτ ̸= 0, where ζτ,t =
∑t

s=1 ετ,t with ετ,t ∼ I(0) and τ0 = 0. θt is generated as either

of the followings: (random walk) θt = θt−1 + εθ,t = ζθ,t

(random walk with drift) θt = θt−1 + cθ + εθ,t = cθt+ ζθ,t for some cθ ̸= 0,

where ζθ,t =
∑t

s=1 εθ,t with εθ,t ∼ I(0) and θ0 = 0. For simplicity, we suppose θt ∈ R1. We

can consider the following feasible cases.

Case 1: θt is random walk with drift and ξt is stationary without trend Suppose

θt = cθt + ζθ,t and ξt = τt − δθt = (cτ − δcθ)t + (ζτ,t − δζθ,t), where (cτ − δcθ) = 0 and

(ζτ,t − δζθ,t) ∼ I(0). This is the case when a proper θt was chosen so that it shares both

the deterministic and the stochastic trends with τt in (S.7). In other words, the linear

combination τt − δθt with δ eliminates both the linear trend and the stochastic trend, and

hence the cointegration error ξt is a mean-zero stationary process without a linear trend. In

this case, similarly as in the proof of Lemma B1, we can show that

T 3/2(δ̂ − δ) =

∑T
t=1 θ̃tet∑T
t=1(θ̃t)

2
=
T−3/2

∑T
t=1(cθ t̃+ ζ̃θ,t)ξt + op (1)

T−3
∑T

t=1(cθ t̃+ ζ̃θ,t)2
⇒

cθωξ
∫ 1

0
r̃dW1(r)

c2θ
∫ 1

0
(r̃)2dr

.

11



For Snt in (S.1), since δ̂ − δ = Op(T
−3/2), (δ̂ − δ)θt term is still dominated by the other

terms ξt + xit as in the original case without linear trends. Therefore, all the lemmas for

the ξ ∼ I(0) do not change and the limiting distribution of Tϕ(b) remains the same as in

Theorems 1 and 2. □

Case 2: θt is random walk with drift and ξt is random walk Suppose θt = cθt+ ζθ,t

and ξt = τt−δθt = (cτ−δcθ)t+(ζτ,t−δζθ,t), where (cτ−δcθ) = 0 but (ζτ,t−δζθ,t) ∼ I(1). This

is the case when θt only shares the linear trend of τt in (S.7), but the detrended processes

do not have a cointegrating relation. In other words, the linear combination τt − δθt with

δ eliminates the linear trend but not the stochastic trend. In this case, similarly as in the

proof of Lemma B1, we can show that

T 1/2(δ̂ − δ) =
T−5/2

∑T
t=1(cθ t̃+ ζ̃θ,t)ξt + op (1)

T−3
∑T

t=1(cθ t̃+ ζ̃θ,t)2
⇒

cθωξ
∫ 1

0
r̃W1(r)dr

c2θ
∫ 1

0
(r̃)2dr

= Dδ,A

and thus, for Snt in (S.1), the term ξt − (δ̂ − δ)θt still dominates xit. It follows that

T−3ZnT (r) =
1

T 3

[Tr]∑
t=1

t̃

{(
ξt − (δ̂ − δ)(cθt+ ζθ,t)

)2
− 1

T

T∑
s=1

(
ξs − (δ̂ − δ)(cθs+ ζθ,s)

)2}
+ op (1)

⇒
∫ r

0

s̃ (Bξ (s)−Dδ,Acθs)
2 ds−

∫ r

0

s̃ds

∫ 1

0

(Bξ (s)−Dδ,Acθs)
2 ds

= ω2
ξ

∫ r

0

s̃ṼA (s) ds,

where

(Bξ (s)−Dδ,Acθs)
2 =

{
Bξ (s)− cθωξ

∫ 1

0

W1(ν)ν̃dν

(
c2θ

∫ 1

0

ν̃2dν

)−1

cθs

}2

= ω2
ξ

{
W1 (s)−

∫ 1

0

W1(ν)ν̃dν

(∫ 1

0

(ν̃)2dν

)−1

s

}2

= ω2
ξVA (s)
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and ω2
ξ is the long-run variance of ξt. Therefore, following the proofs of Lemmas B4 and B5,

the limiting distribution is obtained as

Tϕ(b) =
T−3ZnT (1) (T

−3MT )
−1{

(T−3MT )
−1 T−6ΨnT (b) (T−3MT )

−1}1/2 ⇒
∫ 1

0
r̃ṼA (r) dr{∫ 1

0

∫ 1

0
K
(
r−s
b

)
r̃s̃V τ

A (r)V τ
A (s) drds

}1/2

where MT =
∑T

t=1(t̃)
2 and

V τ
A (r) = ṼA (r)− r̃

(∫ 1

0

(ν̃)2dν

)−1 ∫ 1

0

ν̃ṼA (ν) dν. (S.8)

□

Case 3: θt is random walk and ξt contains a linear trend Suppose θt = ζθ,t and

ξt = τt − δθt = cτ t + (ζτ,t − δζθ,t). This is the case that one incorrectly chose θt that

does not contain a linear trend. Thus, the uncontrolled linear trend of τt, cτ t, dominates

ζξ,t = ζτ,t − δζθ,t in the regression error ξt. In this case, whether ζξ,t is I(0) or I(1), we can

show that δ̂ → ∞ because

T−1/2(δ̂ − δ) =
T−5/2

∑T
t=1 θ̃t (cτ t+ ζξ,t) + op (1)

T−2
∑T

t=1(θ̃t)
2

⇒
cτ
∫ 1

0
rB̃θ (r) dr∫ 1

0
B̃2
θ (r) dr

= Dδ,B

and hence, for Snt in (S.1), the term ξt− (δ̂− δ)θt dominates xit like Case 2 above. Following

the same steps, we can derive that

T−4ZnT (r) =
1

T 4

[Tr]∑
t=1

t̃

{(
(cτ t+ ζξ,t)− (δ̂ − δ)θt

)2
− 1

T

T∑
s=1

(
(cτs+ ζξ,s)− (δ̂ − δ)θt

)2}
+ op (1)

⇒
∫ r

0

s̃ (cτs−Dδ,BBθ (s))
2 ds−

∫ r

0

s̃ds

∫ 1

0

(cτs−Dδ,BBθ (s))
2 ds

= c2τ

∫ r

0

s̃ṼB (s) ds,

where

(cτs−Dδ,BBθ (s))
2 =

{
cτs− cτ

∫ 1

0

νB̃θ (ν) dν

(∫ 1

0

B̃2
θ (ν) dν

)−1

Bθ (s)

}2
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Figure S1: Limiting distributions of Tϕ(b) with linear trends
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Note: The figure on the left depicts the four CDF’s of the limiting distributions. The black solid
line is F0(b), which is also for Case 1 when min{κ1, κ2} > 1/4 as in Theorem 1; the black dotted
line is for Case 2; and the red dash-dotted line is for Case 3. The blue dashed line is F1(b) with
absence of trend as given in Figure 3. All the distribution functions are simulated with b = 0.1
and T = 5, 000 over 10,000 replications. The figure on the right zooms in the left-side tails of the
CDF’s.

= c2τ

{
s− ωθ

∫ 1

0

νW̃m(ν)dν

(
ω2
θ

∫ 1

0

W̃ 2
m(ν)dν

)−1

ωθWm (s)

}2

= c2τ

{
s−

∫ 1

0

νW̃m(ν)dν

(∫ 1

0

W̃ 2
m(ν)dν

)−1

Wm (s)

}2

= c2τVB (s)

and ω2
θ is the long-run variance of θt. Therefore, the limiting distribution is obtained as

Tϕ(b) =
T−4ZnT (1) (T

−3MT )
−1{

(T−3MT )
−1 T−8ΨnT (b) (T−3MT )

−1}1/2 ⇒
∫ 1

0
r̃ṼB (r) dr{∫ 1

0

∫ 1

0
K
(
r−s
b

)
r̃s̃V τ

B (r)V τ
B (s) drds

}1/2

where V τ
B (r) is defined as in (S.8) with ṼB. □
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When ξt is stationary without trend (hence τt and θt are cointegrated), Case 1 shows

that the limiting distribution of Tϕ(b) remains the same as those in Theorems 1 and 2, even

when τt and θt have deterministic trends. If τt and θt are not cointegrated (Case 2), or

when the linear trend is not properly controlled for and hence ξt is trend-stationary (Case

3), the limiting distributions of Tϕ(b) are pivotal and behaves in a similar way as the case of

ξt ∼ I(1) in Theorem 1. Under the latter cases 2 and 3, Sn,t would be positively associated

with t, and the test Tϕ(b) should not reject ϕ ≥ 0. Figure S1 depicts the the CDF’s of the

limiting distributions of those cases with linear trends and their left-side tails. It shows that

the the left tails of the cases 2 and 3 are much thinner than that of F1(b). Therefore, the test

Tϕ(b) can be applied whether or not the nonstationary latent trend τt contain deterministic

trends over the stochastic trends, using the same critical values from F0(b) as given in Tables

7 and 8.

S.3 Simulations

We suppose the following data generating process:

yit = ai + τt + x∗it

x∗it = µit
−κ1 + ϵit + εitt

−κ2

τt = 2θt + ξt

θt = θt−1 + εθ,t

where ai, ϵit, and εθ,t are iidN (0, 1); µi ∼ iidN
(
0, σ2

µ

)
and εit ∼ iidN (0, σ2

ε). We let the

variances of µi and εit are the same σ2
µ = σ2

ε = σ2, and the decaying rates are the same

κ1 = κ2 = κ. When τt and θt are cointegrated, we let ξt ∼ iidN (0, 1); when they are

not cointegrated, we let ∆ξt ∼ iidN (0, 1). We simulate 5,000 times to obtain the rejection

probabilities of T 0
ϕ (b) with the critical value −1.961 of 5% significance level from Table 1,

where we use the Bartlett kernel and b = 0.1 in HAR estimation. The same set of simulation

was done with Tϕ(b), but the results are very similar and hence omitted.

Table S1 presents the rejection probabilities of the test statistic T 0
ϕ (0.1) under the null

case (i.e., Theorem 1) that Sn,t is not negatively associated with t. The first two panels

15



Table S1: Rejection Probabilities under Null Cases

T
ξt n 25 50 100 200 400

I(0) 25 0.052 0.056 0.045 0.041 0.047
50 0.053 0.051 0.051 0.050 0.043
100 0.052 0.052 0.049 0.049 0.045
200 0.051 0.054 0.051 0.051 0.053
400 0.053 0.054 0.047 0.050 0.050

I(1) 25 0.033 0.029 0.032 0.030 0.025
50 0.032 0.030 0.028 0.027 0.021
100 0.032 0.030 0.028 0.027 0.030
200 0.033 0.028 0.031 0.024 0.030
400 0.029 0.031 0.033 0.032 0.026

I(1) & trend-θt 25 0.018 0.008 0.006 0.006 0.005
50 0.019 0.012 0.007 0.007 0.002
100 0.020 0.009 0.005 0.006 0.004
200 0.017 0.013 0.005 0.005 0.006
400 0.015 0.008 0.006 0.007 0.004

I(0)+trend 25 0.015 0.012 0.010 0.010 0.010
50 0.012 0.012 0.010 0.009 0.013
100 0.014 0.012 0.012 0.010 0.010
200 0.011 0.013 0.012 0.013 0.010
400 0.011 0.012 0.013 0.012 0.009

Note: ξt ∼ I(0) corresponds to F0(b); ξt ∼ I(1) corresponds to F1(b); ξt ∼ I(0) & trend-θt is Case
2 discussed in Section S.2; ξt ∼ I(0)+trend is Case 3 discussed in Section S.2.
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Table S2: Rejection Probabilities under Alternative Cases

κ = 0.20 κ = 0.25

T T
σ2 n 25 50 100 200 400 25 50 100 200 400

1 25 0.218 0.255 0.283 0.338 0.378 0.233 0.258 0.266 0.294 0.304
50 0.245 0.291 0.338 0.358 0.401 0.258 0.289 0.316 0.311 0.321
100 0.269 0.301 0.338 0.403 0.445 0.285 0.298 0.315 0.346 0.352
200 0.286 0.314 0.355 0.387 0.453 0.299 0.310 0.330 0.330 0.351
400 0.295 0.320 0.366 0.397 0.444 0.309 0.317 0.336 0.340 0.348

3 25 0.629 0.747 0.832 0.886 0.924 0.674 0.749 0.803 0.825 0.845
50 0.716 0.808 0.875 0.933 0.953 0.752 0.804 0.841 0.886 0.887
100 0.761 0.856 0.921 0.943 0.974 0.785 0.846 0.887 0.895 0.921
200 0.799 0.873 0.927 0.949 0.976 0.814 0.861 0.898 0.906 0.926
400 0.813 0.883 0.924 0.965 0.977 0.827 0.873 0.896 0.923 0.925

5 25 0.840 0.921 0.971 0.990 0.996 0.878 0.929 0.964 0.975 0.979
50 0.907 0.968 0.988 0.997 0.999 0.926 0.967 0.979 0.991 0.992
100 0.944 0.978 0.993 0.998 1.000 0.951 0.975 0.989 0.993 0.996
200 0.958 0.986 0.996 0.999 1.000 0.963 0.983 0.992 0.996 0.998
400 0.963 0.989 0.997 0.999 1.000 0.967 0.987 0.993 0.996 0.996

10 25 0.967 0.996 1.000 1.000 1.000 0.985 0.998 1.000 1.000 1.000
50 0.994 0.999 1.000 1.000 1.000 0.996 0.999 1.000 1.000 1.000
100 0.996 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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consider two scenarios. (i) ξt ∼ I(0) case: τt and θt are cointegrated, but γ(ξ2t , t) dominates

γ(Rt, t) as in (16). (ii) ξt ∼ I(1) case: τt and θt are not cointegrated as in (15). For these

scenarios, we set x∗it = ϵit with σ
2 = 1, where κ is very close to zero and hence the dominance

of ξt’s variance makes the other decaying terms irrelevant. The last two panels consider the

cases with trends discussed in Section S.2: (iii) Case 2, where ξt ∼ I(1) and θt imposes

a linear trend; and (iv) Case 3, where ξt is trend-stationary but θt does not have a linear

trend. We let cτ = cθ = 0.5. We find that the size is well controlled even in small samples.

Furthermore, as discussed in Section S.2, the cases with linear trends well belong to the null

case.

These results are also consistent with the shapes of the limiting distributions given in

Figure S1, where both F1(b) (blue dashed line) and the distribution of Case 3 (red dash-dotted

line) stochastically dominate F0(b) (black solid line). Furthermore, while the distribution

under Case 2 does not stochastically dominate F0(b), it also has a positive mode like F1(b)

and a very thin left tail, and thus does not affect our one-sided test.

Table S2 summarizes the the rejection probabilities of T 0
ϕ (0.1) under the alternative case

(i.e., Theorem 2) that Sn,t is negatively associated with t. We consider κ ∈ {0.20, 0.25}
and change the values of σ2 ∈ {1, 3, 5, 10}. As well predicted from Theorem 2, the rejection

probability (i.e., power of the test) improves as σ2 gets large, which is because the variance

ratio ω2
∗ between x∗it and ξt increases. (Recall the variance of ξt is fixed as unity and hence

ω2
∗ = σ2 here.) The power improves with n, T as well, with the effect of T being more

pronounced.

S.4 Supplementary Results on Crime Rate Example

Table S3 provides the summary statistics, the source of each data, and the data details used

in the crime rate applications of the paper. All values in the table are presented in levels

(i.e., before log-transformation). Tables S4 and S5 report the results in Tables 3 and 6,

respectively, where the trend determinant variables for θt are lagged by two periods, instead

of one.

18



Remark As noted in the footnote 10, we can enrich the subgroup estimate by examining

any potentially missing convergent members in Ĝ(θ)c using the following automated proce-

dure. First, for all i ∈ Ĝ(θ)c, we sort individuals by the distance from yit toward the common

trend (i.e., dit = yit − δ̂′θt) during the most recent sampling periods t = T ϵ, . . . , T , where

T ϵ = T − [ϵT ] for some small ϵ > 0. This is based on the observation that divergent series

often exhibit signs of divergence towards the end of the sample period (e.g., Phillips and Sul

(2007)). The order statistics of such vectors dϵi = (diT ϵ , . . . , diT )
′ can be obtained using the

forecast depth by Lee and Sul (2023a). For instance, we can use the Mahalanobis forecast

depth given as (see Lee and Sul (2023b) for other depths)

Di =
1

1 + dϵ′i V
−1
ϵ dϵi

with Vϵ =
1

|Ĝ(θ)c|

∑
i∈Ĝ(θ)c

dϵid
ϵ′
i .

Second, we sort individuals by their forecast depths in descending order, which shows the

degree of proximity of yit to the common trend δ̂′θt over t = T ϵ, . . . , T .

Third, we sequentially add individuals with the largest depth to the subgroup estimate,

who are not originally included in Ĝ(θ), until the t-test T 0
ϕ (b) using the extended subgroup

exceeds the critical value (e.g., −1.96 for b = 0.1 and 5% significance level). This yields the

enriched subgroup estimate. In our property crime analysis, this procedure indeed improves

the convergent subgroup size for the ‘Prison’ variable.
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Table S3: Data Description and Summary Statistics

Mean Std. dev. Min Max Period Source

Violent Crimes
All Violent Crime 431.29 212.88 56.85 1244.33 1987-2021 FBI UCR

Assault 277.60 143.95 34.09 785.72 1987-2021 FBI UCR
Robbery 110.20 81.50 6.40 624.66 1987-2021 FBI UCR
Homicide 5.40 3.06 0.16 20.35 1987-2021 FBI UCR

Property Crimes
All Property Crime 3424.69 1210.91 964.70 7819.90 1987-2021 FBI UCR

Burglary 735.78 350.37 73.73 2294.26 1987-2021 FBI UCR
Larceny 2358.46 769.40 711.91 5106.13 1987-2021 FBI UCR

Motor Vehicle Theft 330.45 197.94 29.52 1157.66 1987-2021 FBI UCR

Trend Variables
population (age 10-19) 13.92 0.10 12.76 14.69 1986-2020 Census
population (age 20-29) 14.44 0.20 13.36 17.76 1986-2020 Census
population (age 30-39) 14.77 0.27 12.87 17.06 1986-2020 Census
population (age 40-49) 13.68 0.21 10.94 15.38 1986-2020 Census

police officer 2.21 0.02 2.03 2.41 1986-2020 FBI UCR
incarceration 2.09 0.07 1.14 2.59 1986-2020 BJS

real GDP 50016.86 1312.64 36698 62606 1986-2020 FRED

Notes: (i) FBI UCR is the FBI Uniform Crime Report; Census is the U.S. Census Bureau; BJS
is the Bureau of Justice Statistics; FRED is the Federal Reserve Economic Data at the St. Louis
Fed. (ii) All the ‘Crimes’ are defined as the number of crimes per 100,000 population; ‘population’
is percentage of population in each specific age group (Demog = log(population)); ‘police officer’
is the number of non-civilian police officers per 1,000 population (Police = log(police officer));
‘incarceration’ is the incarceration count per 1,000 population (Prison = log(incarceration)); ‘real
GDP’ is real GDP per capita in 2017 dollars (RGDP = log(real GDP)).
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Table S4: Long-Run Trend Determinants for Violent Crimes (with 2-year lagged variables)

Crime θt δ̂ se(δ̂) Tϕ(0.1) T 0
ϕ (0.1)

Violent Demog 3.684∗ 0.323 -7.858∗ -9.346∗

Police -0.924 1.285 -3.591∗ -6.313∗

Prison -0.885∗ 0.208 0.380 0.541
RGDP -1.458∗ 0.142 66.116 7.435

Assault Demog 3.127∗ 0.366 -4.124∗ -9.247∗

Police -0.802 1.100 -1.798 -4.364∗

Prison -0.778∗ 0.197 0.500 0.919
RGDP -1.221∗ 0.163 35.386 5.968

Homicide Demog 3.124∗ 0.531 -6.514∗ -3.538∗

Police -2.056∗ 1.180 -0.306 -3.660∗

Prison -0.973 0.182 0.055 1.294
RGDP -1.189∗ 0.267 11.161 2.606

Robbery Demog 5.780∗ 0.587 -20.075∗ -2.582∗

Police -0.532 2.072 -2.439∗ -8.898∗

Prison -1.184∗ 0.323 -0.668 -1.287
RGDP -2.367∗ 0.209 84.106 2.806

Note: (i) δ̂ is the least squares estimate from (10) and se(δ̂) is its standard error from Phillips and
Park (1988). Tϕ(0.1) and T 0

ϕ (0.1) are respectively the t-ratios defined in (12) and (14) with b = 0.1
and the Bartlett kernel. (ii) ‘Demog’ is the log of the fraction of young adult population between
age 10 and 39, ‘Police’ is the log of the number of non-civilian police officers per capita, ‘Prison’ is
the log of the local incarceration per capita, and ‘RGDP’ is the log of the Real GDP per capita.
(iii) From Definition 1, θt becomes a long-run trend determinant if δ̂ is significantly different from
zero and Tϕ(0.1) < −2.04 or T 0

ϕ (0.1) < −1.96, where the 5% critical values are from Table 1; only
‘Demog’ satisfies these two conditions. (* indicates significance at 5%.)
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Table S5: Long-run Trend Determinants for Property Crimes (with 2-year lagged variables)

Crime θt δ̂ se(δ̂) se0(δ̂) Tϕ(0.1) T 0
ϕ (0.1) Group

Property Demog n.a. n.a. n.a. n.a. n.a. 0
Police 0.280 1.500 1.760 -21.630∗ -26.331∗ 50
Prison -0.910∗ 0.220 0.360 -3.054∗ -3.461∗ 40
RGDP n.a. n.a. n.a. n.a. n.a. 0

Burglary Demog 3.370∗ 0.500 0.550 -11.708∗ -12.086∗ 1
Police 0.570 2.150 2.400 -12.385∗ -10.976∗ 49
Prison -1.100∗ 0.340 − -3.094∗ − 42

-1.090∗ − 0.500 − -3.245∗ 43
RGDP -3.900∗ 0.320 − -1.260 − 1

n.a. − n.a. − n.a. 0

Larceny Demog 2.080∗ 0.450 0.400 -1.623 -1.688 1
Police 0.310 1.320 1.590 -17.378∗ -22.701∗ 50
Prison -0.830∗ 0.200 0.320 -2.948∗ -3.488∗ 40
RGDP -2.270∗ 0.160 − -1.238 − 1

n.a. − n.a. − n.a. 0

Motor Vehicle Theft Demog 5.862∗ 0.420 0.491 -17.238∗ -2.387∗

Police -0.682 2.261 2.377 0.302 -6.521∗

Prison -1.389∗ 0.302 0.385 -1.097 -1.046
RGDP -2.278∗ 0.189 0.281 53.495 1.571

Note: (i) ‘Group’ is the number of states selected in the subgroup estimate Ĝ(θ) using Tφi(0.1) and

T 0
φi
(0.1). When they are different, each of δ̂ and Tϕ(0.1) are reported in separate lines. (ii) δ̂ is

the least squares estimate from (10), and se(δ̂) and se0(δ̂) are the standard error from Phillips and
Park (1988) using Tφi(0.1) and T 0

φi
(0.1), respectively. Tϕ(0.1) and T 0

ϕ (0.1) are the t-ratios defined

in (12) and (14) with b = 0.1 and the Bartlett kernel. When Ĝ(θ) is empty, δ̂ and Tϕ(b) cannot be
obtained and marked as ‘n.a.’. (iii) ‘Demog’ is the log of the fraction of young adult population
between age 10 and 39, ‘Police’ is the log of the number of non-civilian police officers per capita,
‘Prison’ is the log of the local incarceration per capita, and ‘RGDP’ is the log of the Real GDP
per capita. (iv) From Definition 1, θt becomes a long-run trend determinant if δ̂ is significantly
different from zero and Tϕ(0.1) < −2.04 or T 0

ϕ (0.1) < −1.96. Furthermore, the size of the subgroup

estimate Ĝ(θ) should be large enough to include most of the states. For ‘Property’, ‘Burglary’, and
‘Larceny’, only ‘Prison’ satisfies all these three conditions. (v) ‘Motor Vehicle Theft’ satisfies the
weak σ-convergence and hence does not require to get the subgroup, so no group size is given. For
this case, ‘Demog’ is identified as a long-run trend determinant, which is defined as the population
fraction of age from 10 to 49. (* indicates significance at 5%.)
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