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1 Introduction

Panel data series typically share a common trend. However, research interest is often in

estimating the marginal effects of control variables or predictors, and the traditional panel

data regression analysis relies on two-way fixed effect models, where such a common trend

is regarded as a nuisance parameter and controlled by the time fixed effect. For this reason,

when the research question centers on identifying the drivers of the evolution (i.e., the leading

trend itself) of the dependent variable, this practice cannot provide the desired answer. The

time fixed effect will control for the leading trends of both the dependent and independent

variables, and statistically significant association between them does not necessarily confirm

that the independent variables are the trend determinants of the dependent variable.

Focusing on unveiling latent dynamics in panel data, this paper starts with the question:

“What are the limitations of two-way fixed effects regression?” We specifically investigate the

unobserved common trends among panel data series, aiming to unveil the underlying drivers

of leading dynamics that are often neglected in standard two-way fixed effects analysis. In

particular, we propose a novel method to verify if observed variables determine the underlying

common trend of a large number of panel series, especially for nonstationary panel data

series whose underlying (stochastic) trend is often hard to identify. Our approach avoids

estimating the latent trend or latent nonstationary factors, making it computationally easy

to implement. In these regards, this method is distinct from Bai and Ng (2006) and Parker

and Sul (2016) that assume stationary panel data and require common factor estimation.

The key insight behind our method is the observation that many panel data series or

their subgroup, even those with stochastic trends, tend to show converging patterns towards

their common trend in the long run. This results in negative association between the cross-

sectional dispersion and time, which is in a similar vein of the idea of weak σ−convergence

by Phillips and Sul (2007) and Kong, Phillips, and Sul (2019). We leverage this concept

of distributional convergence to identify observed time series that co-move with the latent

trend when the majority of panel series converge towards those observed time series in the

long run. These observed variables are then designated as the common trend determinants.

Though we consider panel data whose time periods (T ) and the cross sectional size (N) are

large for asymptotic analysis, we only require N/T tends to infinity. Hence, the proposed
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approach can be implemented even for relatively short panel data, since it benefits from the

information from the large cross section.

This study also contributes to empirical studies examining co-movement in panel data

and the common factors driving such co-movement. For instance, studies on crime rates

often investigate the decline in the U.S. national crime rate since early 1990s and the key

economic variables associated with this trend change (e.g., Levitt (2004); Moody and Marvell

(2010)). To demonstrate the effectiveness of our method, we analyze state-level crime rates

in the U.S. Unlike the existing studies relaying on the two-way fixed effect analysis, we

identify the demographic factor of the young adult population as a key determinant of the

latent common trend of the violent crime rates, highlighting a previously overlooked factor

compared to traditional focuses like police size or income disparity. For the property crime,

on the other hand, we find the incarceration rate is a key determinant of the latent common

trend.

The rest of the paper is organized as follows. Section 2 motivates our approach by ad-

dressing a limitation of the standard two-way fixed effects regression and illustrating the

distributional convergence of panel data. Section 3 formally defines long-run trend deter-

minants based on the concept of distributional convergence and outlines the procedure for

identification. Section 4 derives limiting distributions of the main test statistic, providing

theoretical justification of the proposed method. It also connects the key idea with panel

cointegration, introducing a novel perspective on cointegration between time series and panel

data. Section 5 addresses cases where only a subgroup of series exhibits distributional conver-

gence and proposes a pre-screening method to identify the subgroup with the main common

trend. Section 6 revisits the crime rate example and provides a detailed analysis, yielding

results that differ from those obtained through standard two-way fixed effects estimation.

Section 7 concludes with remarks. The Appendix provides a summary of the main pro-

cedure, proof of the main theorems, and the critical value tables. The online supplement

provides proofs of technical lemmas, more results with linear trends, simulation results, and

additional tables of the empirical analysis in Section 6.
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2 Distributional Convergence of Panel Data

In the literature of determinant of crime rates, one research interest is to explain the decline

of the U.S. national crime rates since the early 1990s. For instance, Figure 1 exhibits the

time series of log national crime rates from 1985 to 2022 and shows that such sharp decline

happened across all types of crimes.

Many studies seek the key economic variables that are associated with the crime rate

trend to find the main drivers of such decline. See Levitt (2004), Moody and Marvell (2010),

and the references therein for more discussions. To find such key determinants, existing

studies often consider the following two-way fixed effects (TWFE) regression model:

yit = ηi + ϱt + β′zit + vit (1)

for i = 1, . . . , n and t = 1, . . . , T , where yit is the log of crime rate of state i and year t, ηi is a

state fixed effect, ϱt is a year fixed effect, and zit is a vector of explanatory variables possibly

including a lagged dependent variable. Instrumental variables regression is often employed

to control for potential simultaneity. However, when yit or zit are unit root processes, this

regression result should be interpreted with caution, particularly when yit and zit are not

cointegrated. For such cases, first-differenced variables are often used, but the interpretation

of β becomes different from the level regression.

More importantly, even when both variables are stationary, controlling for the time effect

ϱt removes all the (co-)trends between yit and zit. Hence, significant β in this regression

model or in its aggregated form, yt = η + ϱt + β′zt + vt with rt = n−1
∑n

i=1 rit for any panel

series rit, does not necessarily provide an evidence whether zit (or zt) are the determinants

of the declining trend of yt or the national crime rate.

To see this, we suppose the data generating process of the panel series yit is given by

yit = αi + τt + x∗it, (2)

where the idiosyncratic component x∗it is assumed to be uncorrelated with αi and τt. x∗it

satisfies the mean-reversion property though it can be heteroskedastic over i and t. The

panel process yit can be nonstationary and have stochastic trends, which thus allows that τt
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Figure 1: National Crime Rates in the U.S.

(a) Violent Crimes and Motor Vehicle Theft (b) Property Crimes

Note: The figure shows the log of the number of offenses per 100,000 inhabitants from 1985 to
2022. All series are standardized to place them in one plot. Motor vehicle theft is not categorized
as a violent crime, but its trajectory is very similar to those with violent crime rates. We exclude
the rape whose definition by the FBI changed in 2013. Data source: The Uniform Crime Report.

be a unit-root process. In this representation, τt describes the latent common trends among

the individual panel series yit, which includes deterministic or stochastic trends. If we let

x∗it = β′z∗it + vit and zit = αz,i + τz,t + z∗it (3)

with vit being uncorrelated with (αz,i, τz,t, z
∗
it ), we can rewrite (2) as

yit = αi + τt + β′ (zit − αz,i − τz,t) + vit

= (αi − β′az,i) + (τt − β′τz,t) + β′zit + vit,

yielding the TWFE regression in (1), where the fixed effects, ηi = (αi − β′αz,i) and ϱt =
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Figure 2: Distributional Convergence of Violent Crime Rates in the U.S.
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(b) Cross-sectional Mean and Variance

Note: Violent crime is composed of homicide, forcible rape, robbery and aggravated assault. The
plots are based on the logarithm of the number of offenses per 100,000 population of each state.
Figure 2(a) shows densities of the log violent crime rates in 1991, 2001 and 2011. The mode moves
to the left, which implies decreasing of the average violent crime rates over time. At the same time,
the cross-sectional dispersion shrinks as well. Figure 2(b) shows the sample cross-sectional mean
(red asterisk) and variance (black circle) across 50 states. Both the mean and the variance decline
since early 1990s.

(τt − β′τz,t), are arbitrarily correlated with the explanatory variables zit. β in this TWFE

regression tells the marginal effect of zit to the idiosyncratic term x∗it (i.e., the idiosyncratic

deviation from the common trend) but it cannot explain the common trend τt of yit.

This simple setup shows that finding significant elements of β in the standard TWFE

regression model (1) cannot identify the key variables or factors explaining the crime rate

trend. Instead, we suggest to examine the distributional dynamics of yit to identify observed

factors of the latent trend τt or the trend determinants.

To motivate this idea, we examine the state-level violent crime rates as an illustrating

example. Figure 2 exhibits cross-sectional densities of the log violent crime rates, and their

cross-sectional mean and variance trajectories across 50 states in the U.S. from 1985 to

2022. Interestingly, in addition to the sharp decline in the national or average crime rates
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since early 1990s, we can find the decline of cross-sectional dispersion (i.e., heterogeneity) of

the crime rates. When τt shows a decreasing trajectory (if Eαi is bounded) and the cross-

sectional variance of x∗it decreases over t, then the data generating process (2) well describes

such distributional dynamics of the crime rates.

The latter feature reminds us the σ−convergence in the economic growth theory, which

assumes monotonically shrinking cross-sectional distribution over t. Instead of considering

such a strong concept of distributional convergence, we adopt the idea of weak σ−convergence

by Kong, Phillips, and Sul (2019) and define the distributional convergence if the cross-

sectional dispersion measure is negatively associated with time t. We formally define the

following.1

Definition 1 (Weak σ−Convergence towards Common Trend) A panel series yit is

weakly σ−convergent towards τt if the following conditions hold:

(a) plimn→∞n
−1
∑n

i=1(yit − τt)
2 = Qt <∞ a.s. for all t;

(b) plimt→∞Qt ∈ [0,∞);

(c) lim supT→∞ c−1
T

∑T
t=1 Q̃tt̃ = γ(Qt, t) < 0 a.s. for some increasing sequence cT → ∞ as

T → ∞, where z̃t = zt − T−1
∑T

t=1 zt denotes the demeaned series of zt.

In this definition, the cross-section variation of the idiosyncratic component

xit = αi + x∗it = yit − τt (4)

is negatively associated with t. Since the panel data yit share a homogeneous trend τt, it

hence implies that the cross-sectional distribution of yit weakly converges towards τt as t gets

large.

Apparently, the common trend τt is unobserved and unknown in most cases. An inter-

esting question is then, as in the aforementioned crime rate study, how to tell observed time

series variables θt to be related with τt, which can be identified as the key determinants

of the dynamics of the panel series yit. If yit is stationary, one could regress yit on some

candidate variables θt and gauge their explanatory power to check if they are such trend

determinants similarly as Chen, Roll, and Ross (1986). However, as noted by Bai and Ng

1When τt corresponds to the cross-sectional sample average of yit, this definition is identical to
the weak σ−convergence of yit by Kong, Phillips, and Sul (2019).
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(2006), this approach is valid only when the variance of regression error is small enough so

that the correlation between yit and θt is dominant. For this reason, Bai and Ng (2006) and

Parker and Sul (2016) propose to study the correlation between an estimated trend τ̂t and

θt directly.
2

We take an approach closer to Chen, Roll, and Ross (1986), which does not require esti-

mating any latent common trend or factors. This approach is more suitable for nonstationary

panel processes, which has not been considered in the aforementioned studies. To this end,

we suppose that the cross-sectional variance of xit (or equivalently that of x∗it) can vary over t

but the variance is negatively associated with t (i.e., xit or x
∗
it satisfies weak σ−convergence

of Kong, Phillips, and Sul (2019)). This is equivalent to assume that the cross-sectional

variation of yit around the nonstationary time series τt is negatively associated with t as

defined in Definition 1.3

If this negative association still holds even when we replace τt with some linear combi-

nation of the observed time series variables θt, then we conclude that θt are closely related

with τt. In this case, we can identify such observed time series variables θt as long-run trend

determinants of the panel data yit. Importantly, this can be done without estimating the

latent common trend τt or common nonstationary factors. We will formalize this idea in the

next section.

Remark 1 Our approach presumes yit satisfies Definition 1 or xit is weakly σ−convergent.

Because yit − yt = xit − xt from (4), this can be checked by examining whether yit itself

is weakly σ−convergent. To this end, recall that Kong, Phillips, and Sul (2019) suggest to

2More precisely, they consider the common factor representation yit = λ′
ift + x∗it and study

the correlation between the estimated factor f̂t and θt, particularly when all the variables are
stationary. In our nonstationary context, we can similarly consider the common factor structure
as yit = αi + λ′

ift + x∗it instead of (2), where ft includes nonstationary factors. This common
factor structure allows for heterogeneous influence of the common trend factors ft and hence each
individual can have its own latent trend τit = λ′

ift. Our setup in (2) can be seen as a restricted
common factor structure with λi = λ for all i, but it is empirically more relevant to discuss common
trend or co-movement in the framework of (2).

3Interestingly, such a distributional convergence behavior is often found in panel data series,
which is mainly because panel data typically share a common attribute and interact with each
other over evolution. Even when all the panel series do not converge to a common trend series, one
can find subgroups that reveal convergence within each subgroup or club. See Section 5 for club
convergence.
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consider the t-test of ψK (say T 0
ψK

) from the auxiliary trend regression:

Rn,t = ψK0 + ψKt+ uK,t, where Rn,t =
1

n

n∑
i=1

(yit − yt)
2 . (5)

3 Evaluating Long-Run Trend Determinant

We now define the long-run trend determinant of panel data as follow. We let θt be an m×1

vector of observed time series and δ be an m× 1 vector of parameters.

Definition 2 (Long-Run Trend Determinant) θt is a vector of long-run trend deter-

minants of panel series yit if there exists non-zero δ such that yit is weakly σ−convergent

towards δ′θt as defined in Definition 1.

To develop a procedure to tell whether nonstationary time series θt is a vector of long-run

trend determinant of nonstationary panel series yit, where the latent common trend τt is unit

root, we first suppose that τt and θt impose a long-run association. A standard way is to

specify a cointegrating relation between them. More precisely, we suppose there exists a

mean-zero stationary process ξt satisfying

τt − δ′θt = ξt, (6)

where there is no cointegration among θt. When τt is observed and T is large enough, a

natural way to find such θt is the cointegration tests. Since τt is unobserved, however, we

instead combine (2), (4), and (6) to have

yit = δ′θt + ξt + xit. (7)

Definition 2 implies that θt become long-run trend determinants of yit when the cross-

sectional variation of the regression error, yit − δ′θt = ξt + xit, is negatively associated

with t, provided δ is not zero.

Note that the cross-sectional sample variation of yit from δ′θt is decomposed as

Sδn,t =
1

n

n∑
i=1

(yit − δ′θt)
2
=

1

n

n∑
i=1

(ξt + xit)
2 = ξ2t +

1

n

n∑
i=1

(xit − xt)
2 + op(1), (8)
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where ξt and xit are assumed to be mean zero and mutually uncorrelated. This expression

implies that yit is weakly σ−convergent towards δ′θt when the sum ξ2t +n−1
∑n

i=1 (xit − xt)
2

is negatively associated with t. Since we presume xit is weakly σ−convergent, it requires the

association between ξ2t and t to be negative or to remain small enough so that the negative

association between the sum ξ2t + n−1
∑n

i=1 (xit − xt)
2 and t is intact. For this reason, we

can identify long-run determinants θt even when they are not strictly cointegrated with τt

as defined in (6), and hence it can be applied for more general cases. We only need the sum

ξ2t + n−1
∑n

i=1 (xit − xt)
2 to be negatively associated with t as discussed above, under which

ξt is not necessarily mean-zero stationary for all t. For instance, τt and θt may not initially

share common stochastic trends but become cointegrated after a certain time (cf. segmented

cointegration, Kim (2003)). In such a case, the standard cointegration tests are likely to fail

to detect the long-run relation (even when τt is observed), whereas our approach based on

Definition 2 could successfully identify it (whether τt is observed or not).

In practice, as δ is unknown, we use

Sn,t =
1

n

n∑
i=1

(yit − δ̂′θt)
2 (9)

for some consistent estimator δ̂ instead of Sδn,t in (8). We can obtain δ̂ from time series

regression in the aggregated equation of (7):

yt = α0 + δ′θt + et, (10)

where yt = n−1
∑n

i=1 yit and et corresponds to the cross-sectional average of ξt+xit.
4 When et

is stationary, least squares estimation of (10) yields a consistent estimator of δ. Furthermore,

if ∆θt and es are uncorrelated (i.e., ∆θt and ξs are uncorrelated in this setup) for all t and

s,5 the significance of each element in δ̂ = (δ̂1, . . . , δ̂m)
′ can be checked using the standard

4This could be seen as replacing τt by yt and run cointegrating regression. It is reminiscent of
a common factor estimator by a cross-sectional average (e.g., Pesaran (2006)) or Mundlak (1978)’s
approach for time fixed effects. In practice, we can use other (weighted) mean series of yit instead
of the cross-sectional sample mean series yt. For instance, in the crime rate example in Section 6,
we can use the national crime rate instead of the cross-state average crime rate.

5When they are correlated, we can use the Fully Modified OLS by Phillips and Hansen (1990)
or Canonical Cointegration Regression by Park (1992).
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t-statistic (e.g., Phillips and Park (1988)). We do not consider θj,t for j = 1, . . . ,m as a

potential long-run trend determinant if its coefficient estimator is not significant. In such

a case, we can reconstruct θt such that it only includes significant elements from this t-test

and define Sn,t in (9) using this reconstructed θt.
6

The association between Sn,t and t can be readily examined using the t-test of ϕ in an

auxiliary trend regression:

Sn,t = ϕ0 + ϕt+ ut. (11)

It is important to note that the trend regression (11) is most likely to be misspecified.

However, the sign of ϕ can still tell the direction of association between Sn,t and t, or

between n−1
∑n

i=1 (yit − δ′θt)
2 and t. To this end, we consider the following robust t-statistic

for ϕ:

Tϕ(b) =
ϕ̂{(∑T

t=1(t̃)
2
)−1

T Ω̂(b)
(∑T

t=1(t̃)
2
)−1
}1/2

, (12)

where t̃ = t − T−1
∑T

r=1 r and Ω̂(b) is the HAR (heteroskedasticity autocorrelation robust)

long-run variance estimator for some fixed-b coefficient b ∈ (0, 1] (e.g., Kiefer and Vogelsang

(2005)). Ω̂(b) is defined as

Ω̂(b) =
T−1∑

ℓ=−(T−1)

K

(
ℓ

Tb

)
Γ̂ℓ, (13)

where

Γ̂ℓ =
1

T

T−ℓ∑
t=1

κtκt+ℓ1 {ℓ ≥ 0}+ 1

T

T∑
t=−ℓ+1

κtκt+ℓ1 {ℓ < 0}

with κt = ûtt̃, ût = Sn,t− ϕ̂0 − ϕ̂t, and a symmetric kernel function K : R 7→ [0, 1] satisfying

6If et is unit-root and hence (10) becomes spurious regression, δ̂ will appear to be significant
with large T and all θt will be included in defining Sn,t. However, the auxiliary trend regression
(11) will tell Sn,t is not negatively associated with t, and hence such θt will be eventually deselected
as long-run determinants.
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K(0) = 1 and
∫
K (ν) dν = 1.7 If ut is homoskedastic, Tϕ(b) is simplified as

T 0
ϕ (b) =

ϕ̂(
Ω̂u(b)/

∑T
t=1(t̃)

2
)1/2 , (14)

where Ω̂u(b) is obtained as Ω̂(b) in (13) by replacing κt with ût.

When the one-side t-test in the auxiliary trend regression (11) rejects ϕ ≥ 0 against ϕ < 0,

we conclude that Sn,t is negatively associated with t and hence yit is weakly σ−convergent

towards δ′θt. From the discussion above, this result yields that θt are long-run trend de-

terminants of yit. On the other hand, when the t-test cannot reject ϕ ≥ 0, Sn,t is either

positively associated with t or unassociated with t. This corresponds to the cases where the

cross-sectional variation of yit − δ′θt increases over t, or neither increases nor decreases over

t. Section 4 derives the limiting distribution of Tϕ(b) in this auxiliary trend regression and

provides the simulated critical values.

Remark 2 The interpretation in (8) offers an interesting perspective on cointegration be-

tween the panel series yit and the time series θt. Even when the common trend τt of yit is

cointegrated with θt as in (6), yit may not show weak σ−convergence towards δ′θt (hence

yit does not appear to share a common stochastic trend with θt). This happens when the

association between the squared cointegration error ξ2t and t outweighs the negative associa-

tion between the cross-sectional variance of yit and t (see Remark 1). Therefore, Definition

2 accounts for the following two aspects jointly: the long-run relation between the common

trend τt of yit and the time series θt (i.e., the first-moment relation); and the non-dominating

variation of the disequilibrium error ξt relative to that of the panel series yit over t (i.e., the

second-moment relation). In comparison, the standard cointegration only accounts for the

first aspect. In this regard, our approach can be seen or used as a (more general) cointegration

test between time series and panel series.

7The required conditions of kernel functions are given in Assumption A. For the Bartlett kernel,
the HAR estimator is given as

Ω̂(b) =
1

T

T∑
t=1

κ2
t +

2

T

L∑
ℓ=1

T−ℓ∑
t=1

(
1− ℓ

L+ 1

)
κtκt+ℓ

with L = [bT ], where [c] is the largest integer smaller than or equal to c.
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4 Limiting Distribution of the t-Test

In this section, we derive the limiting distributions of the t-statistic Tϕ(b) given in (12). It is

important to note that, though this t-test is on the sign of ϕ in the trend regression (11), the

restrictions on ϕ cannot be directly used to derive the limiting distribution of Tϕ(b). This is
because the auxiliary trend regression (11) is a misspecified one and hence the true ϕ does

not exist. For this reason, unlike the standard analysis, we drive the limiting distribution

of Tϕ(b) by assuming some data generating processes that well characterizes the sign of the

long-run association between Sn,t and t.

More precisely, based on the decomposition given in (8), we can characterize the sign of

the association between Sn,t and t using the relative behaviors between n−1
∑n

i=1 (xit − xt)
2

and ξ2t . Note that n
−1
∑n

i=1 (xit − xt)
2 is the same as Rn,t = n−1

∑n
i=1 (yit − yt)

2 as discussed

in Remark 1. We let

Rt = plim
n→∞

Rn,t = plim
n→∞

1

n

n∑
i=1

(yit − yt)
2 .

Recall that we define the limit of the linear association between a time series zt and t as

γ(zt, t) = lim sup
T→∞

1

cT

T∑
t=1

z̃tt̃

for some cT → ∞ in Definition 1-(c). We presume xit is weakly σ−convergent, and thus

γ(Rt, t) < 0. We consider the following three cases:

(i) ξt is I(1); (15)

(ii) ξt is I(0) and γ(ξ
2
t , t) dominates γ(Rt, t); (16)

(iii) ξt is I(0) and γ(ξ
2
t , t) is dominated by γ(Rt, t). (17)

Under the case (i), γ(ξ2t , t) is positive and dominates γ(Rt, t), and hence the common trend

of yit is likely to reveal diverging trajectory from δ′θt. Under the case (ii), yit shows neither

weak σ−convergence toward δ′θt nor divergence from δ′θt because ξt is stationary. Under

the case (iii), since γ(Rt, t) < 0 is presumed, yit reveals weak σ−convergence toward δ′θt.

Therefore, the case (iii) is when Tϕ(b) rejects ϕ ≥ 0 in favor of ϕ < 0, whereas the cases (i)

and (ii) are when Tϕ(b) cannot reject ϕ ≥ 0.
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To formally specify these different cases, we suppose that xit is a trend-stationary process

for each i with shrinking variance over t, which is generated as

xit = αi + µit
−κ1 + ϵit + εitt

−κ2 (18)

for some constants κ1, κ2 ∈ (0, 1/2).8 This specification is for weakly σ− convergent xit,

similar to the models in Kong, Phillips, and Sul (2019) and Kong, Phillips, and Sul (2020),

though it is more general than theirs. This setup maps the sign of ϕ in the trend regression

(11) to the values of κ1 and κ2 in the data generating process (18). The values of κ1 and

κ2 determine the decay rate of the cross-sectional variance of xit, enabling flexible control

over the relative behavior of γ(ξ2t , t) and γ(Rt, t), especially for the cases (ii) and (iii) above.

In particular, we can verify that the case (ii) is specified with κ1, κ2 > 1/4, which ensures

that the cross-sectional variance of xit vanishes fast so that γ(Rt, t) is small enough to be

dominated by γ(ξ2t , t). On the other hand, the case (iii) can be specified with κ1, κ2 ≤ 1/4.

The first theorem below summarizes the limiting (null) distribution of Tϕ(b) when Sn,t

is not negatively associated with t, which is the case that θt are not long-run determinants

of yi,t. ‘⇒’ denotes weak convergence of the associated probability measures and ‘≡’ stands

for the distributional equivalence. b is the fixed-b parameter and K(·) is the kernel function
used in HAR estimator in (13). Let min{κ1, κ2} = κ11{κ1 ≤ κ2}+κ21{κ1 > κ2}, where 1{·}
is the binary indicator.

Theorem 1 Suppose Assumptions 1-3 in the Appendix hold and T/n → 0 as n, T → ∞.

Let xit satisfy (18) with κ1, κ2 ∈ (0, 1/2). For given b ∈ (0, 1], when Sn,t is not negatively

associated with t (i.e., under the cases (15) or (16)), Tϕ(b) in (12) satisfies Tϕ(b) ⇒ F1(b) if ξt ∼ I (1)

Tϕ(b) ⇒ F0(b) if ξt ∼ I (0) and min{κ1, κ2} > 1/4

where

F0(b) ≡
Z{

12
∫ 1

0

∫ 1

0
K
(
t−s
b

) (
r − 1

2

) (
s− 1

2

)
dW τ (r) dW τ (s)

}1/2
(19)

8We exclude the case with κ1, κ2 = 0 because we presume xit satisfies weak σ−convergence.
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Table 1: One-Sided Asymptotic Critical Values (Bartlett kernel)

F0(b) in (19) F 0
0 (b) in (20)

b = 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

1% -3.037 -3.758 -4.350 -4.861 -2.914 -3.598 -4.268 -4.988
2.5% -2.488 -3.045 -3.500 -3.895 -2.385 -2.890 -3.407 -3.974
5% -2.040 -2.467 -2.826 -3.135 -1.961 -2.340 -2.735 -3.181
10% -1.554 -1.861 -2.117 -2.340 -1.501 -1.759 -2.035 -2.354
20% -0.999 -1.181 -1.336 -1.472 -0.968 -1.117 -1.278 -1.469

Note: The values are the simulated percentiles of the limiting distribution of Tϕ(b) and T 0
ϕ (b) given

in (19) and (20), respectively, from 2 million replications. The Brownian motion is approximated by
normalized sums of standard normal random variables using 10,000 steps and the Bartlett kernel
is used for HAR estimation. Recall F0(b) allows for heteroskedasticity as (12) whereas F 0

0 (b) is
under the homoskedasticity restriction as (14). Critical values for other b ∈ (0, 1] are available in
the Appendix.

and F1(b) is given in (B.4) in the Appendix. Z is the standard normal random variable and

W τ (r) is the second-level Brownian bridge.9

Theorem 1 obtains the limiting distribution of Tϕ(b) under the two scenarios in (15) and

(16). The first scenario (i.e., F1(b)) is when Sn,t is positively associated with t, in which τt and

θt are not cointegrated. The second scenario (i.e., F0(b)) is when Sn,t is not associated with

t though τt and θt are cointegrated. When ut is homoskedastic, the t-statistic is simplified

as T 0
ϕ (b) in (14), whose limiting null distribution is given as

F 0
0 (b) ≡

Z{∫ 1

0

∫ 1

0
K
(
t−s
b

)
dW τ (r) dW τ (s)

}1/2
(20)

instead of (19).

Interestingly, both F1(b) and F0(b) in Theorem 1 (and F 0
0 (b) as well) are free from

nuisance parameters. As depicted in Figure 3, simulations exhibit that F1(b) stochastically

dominates F0(b). Thus, in conjunction with Theorem 2 below, we can construct critical

values for this one-sided test using F0(b). The asymptotic critical values for both F0(b) and

9It is equivalent to linearly L2[0, 1] demeaned and detrended standard Brownian motion
W (r). More precisely, W τ (r) = W (r) − a∗ − b∗r and the coefficients (a∗, b∗) are solutions of
min(a,b)

∫ 1
0 {W (r)− a∗ − b∗r}2dr. See MacNeill (1978) and Park and Phillips (1988) for the details.
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Figure 3: Limiting null distributions of Tϕ(b)
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Note: The black solid line is F0(b) and the blue dashed line is F1(b) with b = 0.1. The limiting
distributions are simulated with T = 5, 000 and 10,000 replications.

F 0
0 (b) are provided in Table 1.

The next theorem gives the limit of Tϕ(b) when Sn,t is negatively associated with t, which

corresponds to the case in (17). It hence yields the limiting alternative distribution of Tϕ(b).
‘
p→’ denotes the convergence in probability.

Theorem 2 Suppose the conditions in Theorem 1 hold and ξt ∼ I (0). For given b ∈ (0, 1],

let Sn,t be negatively associated with t (i.e., the case (17) holds). When min{κ1, κ2} = 1/4,

Tϕ(b) ⇒
Z − (2/

√
3)ω2

∗{
12
∫ 1

0

∫ 1

0
K
(
t−s
b

) (
r − 1

2

) (
s− 1

2

)
(dW τ (r) + ω2

∗h(r)dr) (dW
τ (s) + ω2

∗h(s)ds)
}1/2

,

(21)

where h(r) = 4r + r−1/2 − 4 and

ω2
∗ =


σ2
µ/ωξξ if κ1 < κ2

σ2
ε/ωξξ if κ1 > κ2(
σ2
µ + σ2

ε

)
/ωξξ if κ1 = κ2,

(22)

with σ2
µ = Eµ2

i , σ
2
ε = limn→∞ n−1

∑n
i=1 Eε2it, and ω2

ξξ =
∑∞

j=−∞ E(ξ2t − Eξ2t )(ξ2t+j − Eξ2t ).

When min{κ1, κ2} < 1/4,

16



Figure 4: Limiting alternative distributions of Tϕ(b)
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(a) When min{κ1, κ2} = 1/4

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

F
0

F
A

F
B

:  = 0.2

F
B

:  = 0.1

(b) When min{κ1, κ2} < 1/4

Note: Figure 4(a) illustrates how the limiting distribution FA(b;ω
2
∗) in (21) changes with ω2

∗. As
ω2
∗ increases, the distribution shifts to the left and its variance reduces, as shown by the black

(ω2
∗ = 1), blue (ω2

∗ = 3), then red (ω2
∗ = 5) dashed lines. Figure 4(b) illustrates how the limiting

point FB(b;κ∗) in (23) changes with κ∗, where ω2
∗ = 1. As κ∗ decreases, the limiting point shifts

to the left, from “circle” (κ∗ = 0.2) to “cross” (κ∗ = 0.1). In both figures, the black solid line
is the limiting null distribution F0(b). All the limiting distributions are simulated with b = 0.1,
T = 5, 000, and 10,000 replications.

Tϕ(b)
p→ −κ∗/2{∫ 1

0

∫ 1

0
K
(
t−s
b

) (
r − 1

2

) (
s− 1

2

)
g (r;κ∗) g (s;κ∗) drds

}1/2
< 0, (23)

where κ∗ = min{κ1, κ2} and g (r;κ∗) = 6κ∗r + (1− κ∗)(1− 2κ∗)r
−2κ∗ − (1 + 2κ∗).

When min{κ1, κ2} = 1/4 under ξt ∼ I (0), neither γ(Rt, t) nor γ(ξ2t , t) is dominant. In

this case, the ratio between the cross-sectional variance of the panel series yi,t (i.e., Rt) and

the variance of the disequilibrium error ξt (i.e., ξ
2
t ) becomes crucial. This variance ratio is

measured by ω2
∗ and it influences the limiting distribution of Tϕ(b) as in (21). As depicted

in Figure 4(a), as ω2
∗ gets large, the limiting distribution shifts to the negative direction

and shrinks toward the shifted center. When ω2
∗ is small, on the other hand, it could be

hardly distinguished from F0(b). This hence can be understood as a local alternative in this

context and demonstrates that the power of our one-sided test depends on ω2
∗. This implies
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that, even when θt is cointegrated with the latent common trend τt, the test can conclude

that θt are the long-run determinants of the common trend of the panel series yit only if the

cross-sectional variation of yit outweighs that of the cointegration error ξt, as we have also

discussed in Remark 2.

When min{κ1, κ2} < 1/4, γ(Rt, t) dominates γ(ξ2t , t) and the limiting distribution of Tϕ(b)
no longer depends on the variance ratio ω2

∗. In this case, the rate of diminishing variance Rt

becomes the important factor, which solely depends on κ∗ = min{κ1, κ2}. The limit of Tϕ(b)
degenerates to a negative value as given in (23). Figure 4(b) shows that the probability limit

moves to the left as κ∗ gets smaller. Furthermore, simulations show that the degenerating

point is always below the 5% critical value given in Table 1 at each b value. From these two

cases, under min{κ1, κ2} ≤ 1/4, we can find that the limiting distribution of Tϕ(b) shrinks
toward its negative mode as T grows and eventually degenerates as in (23), which gives the

consistency of the test. The online Appendix provides further simulation evidence.

Remark 3 Nonstationary variables often exhibit linear trends. For instance, suppose the

nonstationary common trend τt imposes a linear trend (e.g., a random walk with drift). If

we properly choose a variable θt that also follows a random walk with drift and the regression

of τt on θt successfully accounts for both the linear and stochastic trends, the cointegration

error ξt = τt − δ′θt will be a stationary process without a linear trend. In this case, the

limiting null distribution F0(b) of Tϕ(b) is unaffected by the drift terms. However, if θt is not

correctly chosen or the linear trend is not controlled for, the cointegration error ξt will either

I(1) or, at best, I(0) with a linear trend, under which the test Tϕ(b) would not reject ϕ ≥ 0.

In the online supplement, we derive the limiting distributions for such cases and show that

this leads to pivotal limiting distributions similar to F1(b) in Theorem 1, which have much

thinner left tails than that of F1(b). The drift term in τt hence do not affect our test, and we

can use the same critical values as in the no-drift case in Table 1.

5 Partial Distributional Convergence Case

The important presumption of our approach developed in the previous sections is that the

panel data series yit is weakly σ−convergent towards its common trend τt in (2), or equiv-

alently x∗it is weakly σ−convergent. However, it is not rare that the panel series include
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Figure 5: Partial Distributional Convergence of Burglary Rates

Note: The figure plots the cross-sectional dispersion trajectories of burglary rates across all the 50
states (black square line) from 1987 to 2021 and among the selected 25 states (red circle line) that
exhibit convergence toward the national burglary rates.

some outlying individual series that impose their unique trends. In such a case, it is unlikely

that all the individual series in the panel sample yield the weak σ−convergence towards

the common trend τt. For example, Figure 5 depicts the cross-sectional dispersion of the

burglary rates across all 50 states from the national rate (black square line), which shows a

divergent trajectory, unlike the violent crime rates in Figure 2. This is because some of the

panel series have different trends from τt or their idiosyncratic terms x∗it do not satisfy the

weak σ−convergence.

However, we can find a subgroup of 25 panel series that show weak σ−convergence

towards the national burglary rates (red circle line). In fact, we can seek a subgroup of

the panel series within which the the weak σ−convergence towards its common trend holds.

Once we find this convergent subgroup, we can identify the long-run trend determinants θt of

the leading trend τt within this subgroup using the method developed in the previous section.

In this way, we can exclude some outlying individuals that could (incorrectly) influence the

leading common trend and result in incorrect trend determinant identification. When such

a subgroup is the majority (or becomes the core group), we conclude this θt as the main
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drivers of the overall dynamics of yit.

For any given reference time series θt, selecting a convergent subgroup can be done by

repeatedly applying the procedure developed in the previous section across all the different

subsets among yit. In practice, however, this approach can be infeasible when the cross-

section size n is large and hence the number of different combinations becomes massive.

We instead take a similar approach as Phillips and Sul (2007) and suggest the following

procedure. For time series θt chosen, we use the t-test of φi in the individual-specific auxiliary

trend regression,

∆it = φ0i + φit+ uit (24)

for each i, where ∆it is a distance measure between yit and δ
′θt defined as

∆it = (yit − δ̂′θt)
2 (25)

and δ̂ is from the time series regression of ȳt on θt given in (10). For given b ∈ (0, 1],

we construct the t-statistic Tφi
(b) of φi as in (12) or (14), where ût is replaced with ûit =

∆it− φ̂0i+ φ̂it for each i. When Tφi
(b) is smaller than some threshold, we conclude that ∆it

is not positively associated with t, which implies yit shares a common trend with δ′θt, and

we select i as a member of the subgroup estimate Ĝ(θ) for this chosen θt. This is because,

when τt and θt are cointegrated, ∆it would not grow with t if the distance between yit and

the common trend τt decreases over t.

It is worthy to discuss the choice of critical values in this subgroup selection test, which

can be regarded as a pre-test. In fact, the limit of Tφi
(b) behaves quite similarly as that of

Tϕ(b), and one could use the critical values from Table 1. However, we want to choose a first-

step critical value so that the true convergent members will be selected into the subgroup

estimate Ĝ(θ) with high probability and hence can contribute to improve the power of the

test Tϕ(b) in the second-step. This can be achieved by choosing a larger critical value in this

first-step one-sided test, say c1, with which the nominal size becomes higher than the usual

practice and Pr(Tφi
(θ; b) < c1|i ∈ G(θ)) stays high, where G(θ) is the true convergent group

towards δ′θt. The following corollary provides a useful guideline for this. Derivation of this

corollary is given in the online supplement.
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Corollary 1 Suppose conditions in Theorems 1 and 2 hold for each i, but now T/n =

T → ∞. F1(b) and F0(b) are defined in Theorems 1 and 2, respectively. If ξt ∼ I(1),

Tφi
(b) ⇒ F1(b) as T → ∞ for each i. If ξt ∼ I(0) and for κ1, κ2 ∈ (0, 1/2), Tφi

(b) converges

to F0(b), negatively shifted F0(b), or a negative point not larger than (23) as T → ∞ for

each i.

When ξt ∼ I(1), which is the case that ∆it is positively associated with t, the 10%-

quantile of F1(b) is about −1.13 with b = 0.1. From Corollary 1, when ∆it is not positively

associated with t, the limit of Tφi
(b) will be stochastically dominated by F1(b). Based on this

finding, we use c1 = −1.2 for our empirical analysis in the next section. This choice allows

for at least 10% type I error in the first-step selection test with b = 0.1, while it is more

likely to select the non-diverging members (i.e., the case with ξt ∼ I(0)) into the subgroup

estimate Ĝ(θ).
We can improve the subgroup selection by implementing the following iterative algorithm.

The procedure described above defines ∆it in (25) using δ̂ that is obtained from the time

series regression of ȳt on θt (i.e., ȳt = a0 + δ′θt + et), where ȳt = n−1
∑n

i=1 yit is the average

of yit for all i. Once we find the subgroup, say Ĝ(1)(θ), we can update ȳt such that ȳ
(1)
t =

|Ĝ(1)(θ)|−1
∑

i∈Ĝ(1)(θ) yit and obtain δ̂(1) from the time series regression of ȳ
(1)
t on θt, where

|Ĝ(1)(θ)| is the cardinality of Ĝ(1)(θ). Then we run the trend regression in (24) using ∆
(1)
it =

(yit − δ̂(1)′θt)
2 and conduct the t-test Tφi

(b) only for i ∈ Ĝ(1)(θ) to update the subgroup

estimate to have Ĝ(2)(θ). We repeat this procedure until the subgroup membership is not

further updated or the estimate of δ does not change. If θt is indeed a long-run trend

determinant of this subgroup, this iteration will yield a strictly positive |Ĝ(θ)| at the end of

this iteration procedure. If θt is not a long-run trend determinant (i.e., none of the panel

series share the same long-run trend with θt), we can expect that this iteration will decrease

the subgroup size each round and eventually yield an empty Ĝ(θ).
Once we conclude the subgroup Ĝ(θ), we conduct the t-test Tϕ(b) only using members in

Ĝ(θ). We want to have a large enough |Ĝ(θ)| to claim this subgroup is the majority (i.e.,

becomes the core group) and hence this θt well describes the overall common long-run trend

in the panel series.10

10We can enrich the subgroup estimate Ĝ(θ) by adding potentially missing agents in this selection
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6 Trend Determinants of U.S. Crime Rates

We now look into the examples introduced in the previous sections and identify the key

trend determinants yielding sharp decline of the national crime rate in the U.S. in the 1990s.

As we discussed in Section 2, we claim that the desired answer to this research question

cannot be obtained from the standard TWFE regression. Instead, we suggest using our

approach to check if a given time series is a long-run trend determinant of the crime rate

yit as defined in Definition 2, which then should be regarded as one of the determinants

that govern the evolution of the national crime rate and hence explains the sharp crime rate

decline in the 1990s. In particular, we revisit the following four variables that Levitt (2004)

considered and study which one can be identified as trend determinants of our definition: the

number of sworn police officers, the incarceration rate, the real GDP, and demographics (i.e.,

the proportion of population in some specific age group). Levitt (2004) found the first two

variables were the determinants of the crime rate decline in the 1990s but the two latter were

not.11. Unlike such findings, we find that demographics is the key long-run trend determinant

of the violent crime rates and the incarceration rate is the key long-run trend determinant of

the property crime rates, which well describe the crime rate dynamics including its decline

in the 1990s. We report the detailed results in the following two subsections.

6.1 Violent Crimes

We consider the log of the following state-level violent crime rates: aggravated assault,

homicide (murder and nonnegligent manslaughter), robbery, and the overall violent crime.

As noted in Figure 1, forcible rape is excluded in this analysis due to data limitation; instead

we include the violent crime rate that encompasses all four types of violent crime (i.e., assault,

step. One idea is to measure some distance from yit toward δ̂′θt for each i ∈ Ĝ(θ)c over some periods
and include the agents with the smallest distance to Ĝ(θ) as long as the t-test Tϕ(b) stays below
the desired critical value. The forecast depth by Lee and Sul (2023a) or more generally Lee and
Sul (2023b) can be used for such distance measure. See the online supplement for the details.

11Levitt (2004) concluded that the following four variables are the main determinants of the
crime rate decline – increases in the number of police officers, rising prison population, receding
crack epidemic, and legalization of abortion – but the following variables are not the determinants
– strong economy of the 1990s, demographics, policing strategies, gun control laws, carrying of
concealed weapons, and capital punishment.
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homicide, robbery, and rape). We collect all the crime rates from the Uniform Crime Report

on FBI Crime Data Explorer, and study the period from 1987 to 2021 over 50 states in the

U.S.12

Prior to our analysis, we need to check if x∗it in (2) satisfies the weak σ−convergence

and if yit imposes stochastic trends (i.e., nonstationary process). As noted in Remark 1,

the first point can be readily checked by studying the weak σ−convergence of the panel

series yit using the t-test of ψK , T 0
ψK

, from the trend regression (5). For the second point,

instead of directly testing for the unit root of all the panel series, we indirectly check if

yit satisfies the weak σ−convergence toward some deterministic trend.13 This can be done

by replacing τt by some deterministic trend function and check the weak σ−convergence

of detrended yit. More specifically, we consider a linear trend function τt = δt in this

analysis, and conduct the weak σ−convergence test of Kong, Phillips, and Sul (2019) as in

Remark 1 using Rn,t = n−1
∑n

i=1(yit − α̂0 − δ̂t)2, where (α̂0, δ̂) is from the trend regression:

yt = α0 + δt + et. If yit is nonstationary, its cross-sectional variation would be positively

associated with t even after this detrending. Thus, when the weak σ−convergence holds in

this case, we conclude yit to be trend stationary.

The first column in Table 2 reports these t-statistics T 0
ψK

using the HAC long-run variance

estimator with the lag length of [T 1/3]. The specific form of T 0
ψK

is given in Appendix A.1.

As suggested in Kong, Phillips, and Sul (2019), we reject the null of no weak σ−convergence

if T 0
ψK

< −1.65. All satisfy weak σ−convergence and hence the panel series yit share a

common long-run trend. Instead of the sample average process yt, we also consider the log

of national crime rate and report the t-statistics in the second column, but the results are

quire similar to those with the sample average process. Next, the third column in Table 2

reports the t-statistics of the weak σ−convergence test toward a linear deterministic trend,

which show yit is most likely nonstationary.14

Based on these preliminary results, we now apply the idea in Section 2 for the following

12https://cde.ucr.cjis.gov/LATEST/webapp/#/pages/explorer/crime/crime-trend. The period
is chosen to match the available sample period of potential determinant variables we consider.

13This approach can be a useful alternative to the standard panel unit root tests especially when
T is small (but n is large) as our case.

14Though T = 35 is rather small in this analysis, we also conduct Augmented Dickey–Fuller,
KPSS, and Phillips-Perron tests to check whether yt’s are unit root (with linear trends). All tests
cannot reject the null of unit root.
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Table 2: Preliminary Weak σ−Convergence Tests of Violent Crime Rates

Weak σ−convergence toward:
Sample Mean National Average Linear Trend

Violent -10.01 -11.14 6.36
Assault -6.23 -8.44 5.07

Homicide -3.06 -4.83 1.96
Robbery -13.27 -9.47 4.79

Note: (i) The first two columns report the t-ratio T 0
ψK

of the weak σ−convergence test from (5)

using the HAC long-run variance estimator with the lag length of [T 1/3]; T 0
ψK

< −1.65 implies weak
σ−convergence toward the sample mean (1st column) or national average (2nd column). The last
column reports the t-ratio of the weak σ−convergence test toward a linear trend, which is T 0

ψK

from (5) with Rn,t = n−1
∑n

i=1(yit − α̂0 − δ̂t)2, where (α̂0, δ̂) is obtained from yt = α0 + δt + et;
a value larger than −1.65 implies yit is not trend stationary. The specific form of T 0

ψK
is given in

Appendix A.1. (ii) Violent crime includes homicide, rape, robbery, and assault. (iii) The sample
period is from 1987 to 2021, which matches with the sample period of candidate determinants θt
that are lagged by one period.

time series as candidates of long-run determinants θt: the fraction of young adult population

of age between 10 and 39 (Demog), the number of non-civilian police officers (Police), the

local incarceration rate (Prison), and the real GDP per capita (RGDP).15 All variables are

log-transformed and lagged by one period to minimize potential simultaneity.16 Augmented

Dickey–Fuller, KPSS, and Phillips-Perron tests show that all these time series are unit root

(with linear trends). For each of those candidate time series, we conduct two-types of the

t-tests, Tϕ(b) in (12) and T 0
ϕ (b) in (14), using the HAR long-run variance estimator with

b = 0.1 and the Bartlett kernel.

Table 3 reports the test results for potential common long-run trend determinants θt of the

log of four crime rates: violent crime, assault, homicide, and robbery. Among the candidate

determinants, only ‘Demog’ can be identified as a long-run trend determinant because it

shows that δ is significantly different from zero and the trend regression t-statistics Tϕ(b)

15The summary statistics, the source of each data and the data details are reported in Table S3
in the online supplement.

16As a robustness check, we considered variables lagged by two periods as well, but the findings
are in the line with those presented here with one-period lag. The additional results are reported in
the online supplement. Also note that choice between non-civilian and civilian police officers does
not change the results. Choice among the three types of incarceration rates (i.e., federal, state, and
local) does not change the results, either.
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Table 3: Long-Run Trend Determinants for Violent Crimes

Crime θt δ̂ se(δ̂) Tϕ(0.1) T 0
ϕ (0.1)

Violent Demog 3.601∗ 0.431 -6.658∗ -7.299∗

Police -0.467 1.224 -2.748∗ -4.915∗

Prison -0.813∗ 0.227 0.293 0.390
RGDP -1.432∗ 0.171 62.835 6.376

Assault Demog 3.063∗ 0.460 -3.423∗ -7.089∗

Police -0.285 1.057 -1.440 -3.681∗

Prison -0.704∗ 0.216 0.341 0.578
RGDP -1.204∗ 0.184 34.889 5.367

Homicide Demog 3.308∗ 0.466 -7.948∗ -3.875∗

Police -1.548 1.216 -0.262 -3.931∗

Prison -0.971∗ 0.212 0.030 0.623
RGDP -1.281∗ 0.224 13.621 2.912

Robbery Demog 5.498∗ 0.645 -19.629∗ -2.964∗

Police -0.321 1.864 -2.278∗ -8.331∗

Prison -1.080∗ 0.323 -0.615 -1.218
RGDP -2.258∗ 0.230 87.087 3.228

Note: (i) δ̂ is the least squares estimate from (10) and se(δ̂) is its standard errors from Phillips and
Park (1988). Tϕ(0.1) and T 0

ϕ (0.1) are respectively the t-ratios defined in (12) and (14) with b = 0.1
and the Bartlett kernel. (ii) ‘Demog’ is the log of the fraction of young adult population between
age 10 and 39, ‘Police’ is the log of the number of non-civilian police officers per capita, ‘Prison’ is
the log of the local incarceration per capita, and ‘RGDP’ is the log of the Real GDP per capita.
(iii) From Definition 1, θt becomes a long-run trend determinant if δ̂ is significantly different from
zero and Tϕ(0.1) < −2.04 or T 0

ϕ (0.1) < −1.96, where the 5% critical values are from Table 1; only
‘Demog’ satisfies all the conditions required. (* indicates significance at 5%.)
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Table 4: Which Ages Are More Violent?

Age Group Violent Assault Homicide Robbery

10 to 29 -2.312 -2.135 -1.433 -1.320
10 to 39 -7.299 -7.089 -3.875 -2.964
10 to 49 -4.045 -3.793 -1.078 -3.500
20 to 39 -5.067 -5.755 -5.853 -1.695
20 to 49 -6.379 -5.848 -1.655 -4.464

Note: The values are T 0
ϕ (0.1) with the fraction of population in each age group as θt.

and T 0
ϕ (b) are less than the 5% critical values (i.e., Tϕ(0.1) < −2.04 and T 0

ϕ (0.1) < −1.96).

In comparison, ‘Police’ shows that δ is insignificant though some trend regression t-statistics

Tϕ(b) or T 0
ϕ (b) are less than the critical values, which hence does not satisfy Definition 2.17

Knowing that the fraction of young adult population is a long-run trend determinant of

all the violent crime rates, we further investigate which age groups are more responsible for

each case in Table 4. The fraction of young adult population of age between 10 and 39 best

describes the common long-run trends of assault and overall violent crimes (which includes

rape); age between 20 and 39 for homicide; age between 20 and 49 for robbery.

6.2 Property Crimes

For the property crimes, we consider burglary, larceny-theft, and motor vehicle theft, as

well as the overall property crime rates. Due to data limitation, arson is excluded, but the

overall property crime encompasses all these four types of property crimes. Like the violent

crime rates, all these state-level property crime rates are collected from the Uniform Crime

Report on FBI Crime Data Explorer from 1987 to 2021 over 50 states in the U.S. We first

check if these panel series satisfy the weak σ−convergence and they are not trend stationary.

17We also conducted residual-based cointegration test between the average of each crime rate (yt)
and the potential determinant θt, which cannot reject the null of no cointegration for all the cases.
It should be noted that, however, this cointegration test would not perform properly with small
T , which is T = 35 in this analysis. This comparison shows that our approach can identify time
series that is associated with the latent common trend of panel series or their common trend factor,
even when the standard cointegration test may not be able to do so. From this perspective, as also
discussed in Remark 2, our approach can seen as an alternative to the standard (homogeneous)
panel cointegration tests (e.g., Kao (1999)), particularly when T is not large enough.
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Table 5: Preliminary Weak σ−Convergence Tests of Property Crime Rates

Weak σ-convergence toward:
Sample Mean National Average Linear Trend

Property 0.33 -0.83 n.a.
Burglary 3.53 1.43 n.a.
Larceny -1.11 -1.44 n.a.

Motor Vehicle Theft -1.80 -3.78 2.58

Note: (i) The first two columns report the t-ratio T 0
ψK

of the weak σ−convergence test from (5)

as in Table 2; T 0
ψK

< −1.65 implies weak σ−convergence toward the sample mean (1st column) or
national average (2nd column). The last column reports the t-ratio of the weak σ−convergence test
toward a linear trend as in Table 2; a value larger than −1.65 implies yit is not trend stationary. (ii)
Property crime includes burglary, larceny-theft, motor vehicle theft, and arson. (iii) The sample
period is from 1987 to 2021, which matches with the sample period of candidate determinants θt
that are lagged by one period.

Table 5 reports the t-statistics of ψK in the auxiliary trend regression (5) for these four panel

time series. Only motor vehicle theft rate satisfies the weak σ−convergence.18 This result

implies that we need to apply the procedure in Section 5 to first find the subgroup G from

each of the property crime, burglary, and larceny rates panel series that yields distributional

convergence.

To this end, we conduct the subgroup selection procedure using Tφi
(b) with b = 0.1 as

described in Section 5 for each θt variable chosen. We use the threshold value c1 = −1.2.

We elect the panel series i to be included in the convergent subgroup Ĝ(θ) if its Tφi
(b) does

not exceed this threshold c1. One interesting finding is that the choice of c1 does not much

affect the final subgroup selection outcomes after the iterations we described in Section 5, as

long as it is negative. For the iterations, we stop at the rth round if |δ̂(r) − δ̂(r−1)| < 0.001,

where δ̂(r) is the estimate of δ in the time series regression of ȳt on θt given in (10), and hence

the distance measure ∆it = (yit − δ̂′θt)
2 in (25) and the subgroup estimate Ĝ(θ) no longer

change.19

18The table also suggests that motor vehicle theft rate is not linear trend stationary. We do not
consider this trend stationary check for the other variables because they are not weak σ−convergent
and hence our approach cannot be applied. However, we checked their trajectories and concluded
they are not trend stationary.

19This iteration concludes very quickly within a couple of rounds for all the cases.
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Table 6 shows the long-run trend determinant identification results using the final sub-

group estimate Ĝ(θ). We consider the same candidate time series θt (i.e., Demog, Police,

Prison, and RGDP) as we considered for the violent crime case. We find that only ‘Prison’

and ‘Police’ yield large size of the subgroup estimates Ĝ(θ) (i.e., over 80% of the panel se-

ries are included), whereas ‘Demog’ and ‘RGDP’ have no such convergent subgroups. For

‘Prison’, it gives significant δ and satisfies Tϕ(0.1) < −2.04 and T 0
ϕ (0.1) < −1.96. Therefore,

it can be identified as a strong long-run trend determinant for the property crime, burglary,

and larceny. In fact, it is well known in sociology that there is a closed link between in-

carceration rate and property crime, particularly for burglary crime (e.g., Rosenfeld and

Messner (2009); Weatherburn, Hua, and Moffatt (2006)). Interestingly, ‘Police’ yields both

t-ratios are far below the critical values but its δ is not significantly different from zero for

all the cases, and hence it cannot be identified as a long-run trend determinant. Unlike the

violent crime case, ‘Demog’ is no longer a long-run trend determinant because Ĝ(θ) becomes

(nearly) empty, showing almost none of the panel series seem to share a long-run trend with

this time series.

It is worthy to note that the motor vehicle theft shows quite a different result from

the rest of the property crimes in Table 6. As we found in Table 5, it satisfies the weak

σ−convergence (i.e., all the panel series share a long-run common trend) and hence it does

not require to go through the subgroup selection. ‘Demog’ is identified as a long-run trend

determinant for the motor vehicle theft rate, whereas ‘Prison’ is not.20 Though the motor

vehicle theft is not classified into violent crime, its trajectories are very similar to violent

crime as already depicted in Figure 1(a). In fact, a motor vehicle theft can be elevated from

a misdemeanor to a felony, carrying a potential prison sentence of up to 10 years. Unlike

other property crimes, grand theft auto is often linked to its use as a mode of transportation

20We use the fraction of young adult population of age between 10 and 49, instead of age between
10 and 39, in this case. Similarly as Table 4, we obtained the t-statistic T 0

ϕ (0.1) of the motor vehicle
theft rate for different age groups below; it is found that the age group between 10 and 39 has rather
a weak result supporting ‘Demog’ as a long-run common trend determinant. This is because too
young teenagers are less likely to drive and hence less incentive to steal motor vehicles. For this
reason, adding more older population increases the explanatory power in this case.

Age Group 10–29 10–39 10–49 20–39 20–49

T 0
ϕ (0.1) -0.202 -2.005 -2.832 -0.918 -4.429
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Table 6: Long-run Trend Determinants for Property Crimes

Crime θt δ̂ se(δ̂) se0(δ̂) Tϕ(0.1) T 0
ϕ (0.1) Group

Property Demog n.a. n.a. n.a. n.a. n.a. 0
Police 0.300 1.400 1.680 -19.276∗ -24.490∗ 50
Prison -0.850∗ 0.220 0.350 -3.087∗ -3.581∗ 40
RGDP -2.620∗ 0.170 0.180 -1.745 -1.991∗ 1

Burglary Demog 3.210∗ 0.480 0.530 -10.056∗ -10.701∗ 1
Police 0.250 1.990 2.250 -12.450∗ -11.397∗ 49
Prison -1.080∗ 0.310 0.460 -3.077∗ -3.360∗ 42
RGDP -3.810∗ 0.280 0.300 -2.082∗ -1.848∗ 1

Larceny Demog n.a. n.a. n.a. n.a. n.a. 0
Police 0.360 1.220 1.510 -15.541∗ -20.334∗ 50
Prison -0.760∗ 0.200 − -2.993∗ − 40

-0.760∗ − 0.310 − -3.596∗ 41
RGDP -2.180∗ 0.170 0.140 -1.419 -1.493 1

Motor Vehicle Theft Demog 5.816∗ 0.587 0.576 -15.308∗ -2.832∗

Police -0.107 2.166 3.390 -3.275∗ -6.816∗

Prison -1.247∗ 0.340 0.429 -1.283 -1.248
RGDP -2.270∗ 0.229 0.300 51.261 1.419

Note: (i) ‘Group’ is the number of states selected in the subgroup estimate Ĝ(θ) using Tφi(0.1) and

T 0
φi
(0.1). When they are different, each of δ̂ and Tϕ(0.1) are reported in separate lines. (ii) δ̂ is

the least squares estimate from (10), and se(δ̂) and se0(δ̂) are the standard error from Phillips and
Park (1988) using Tφi(0.1) and T 0

φi
(0.1), respectively. Tϕ(0.1) and T 0

ϕ (0.1) are the t-ratios defined

in (12) and (14) with b = 0.1 and the Bartlett kernel. When Ĝ(θ) is empty, δ̂ and Tϕ(b) cannot be
obtained and marked as ‘n.a.’. (iii) ‘Demog’ is the log of the fraction of young adult population
between age 10 and 39, ‘Police’ is the log of the number of non-civilian police officers per capita,
‘Prison’ is the log of the local incarceration per capita, and ‘RGDP’ is the log of the Real GDP
per capita. (iv) From Definition 1, θt becomes a long-run trend determinant if δ̂ is significantly
different from zero and Tϕ(0.1) < −2.04 or T 0

ϕ (0.1) < −1.96. Furthermore, the size of the subgroup

estimate Ĝ(θ) should be large enough to include most of the states. For ‘Property’, ‘Burglary’, and
‘Larceny’, only ‘Prison’ satisfies all these three conditions. (v) ‘Motor Vehicle Theft’ satisfies the
weak σ-convergence and hence does not require to get the subgroup, so no group size is given. For
this case, ‘Demog’ is identified as a long-run trend determinant, which is defined as the population
fraction of age from 10 to 49. (* indicates significance at 5%.)

29



for other offenses or as a tool in violent crimes.

7 Concluding Remarks

We develop a novel method to identify common trend determinants in nonstationary panel

data. Unlike the two-way fixed effects analysis, which eliminates time effects, our method

directly analyzes the underlying common trends. This approach is particularly valuable when

researchers seek to understand the underlying observed factors that drive the shared latent

stochastic trend among panel series. This approach also sheds new light on cointegration

between panel data and time series, emphasizing the needs for analysis of relative variation

between panel data and the cointegration error. We leverage the concept of distributional

convergence (i.e., weak σ−convergence) to formalize this idea. The key advantages of our

approach are applicability to relatively short panel datasets and circumvention of the need

to estimate latent common factors.

Our application to crime rates demonstrates that the percentage of young adults signifi-

cantly influences violent crime trends, while incarceration rates drive property crime trends.

These findings differ from the standard two-way fixed effect analysis, which often highlights

factors like police numbers and income levels. Interestingly, research by Farrell, Tilley, and

Tseloni (2014) aligns with our findings, suggesting a connection between declining violent

crime rates in Canada and the U.K. with a decrease in the young adult population. Addi-

tionally, our analysis reveals a similar trend between motor vehicle theft and violent crime,

distinct from property crime. These insights can open doors for novel policy considerations

in crime control.
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Appendix

A Summary of Procedures

We outline the procedures we implemented in the empirical analysis.

A.1 Weak σ−Convergence of x∗it

The key presumption of our procedure is that the idiosyncratic term x∗it in

yit = αi + τt + x∗it

satisfies the weak σ−convergence (toward its mean). As discussed in Remark 1, this can be

done by studying the weak σ−convergence of yit by Kong, Phillips, and Sul (2019).

1. Obtain Rn,t = n−1
∑n

i=1 (yit − yt)
2, where yt = n−1

∑n
i=1 yit.

2. Run a trend regression:

Rn,t = ψK0 + ψKt+ uK,t

as given in (5) and obtain the t-statistic of ψK as

T 0
ψK

=
ψ̂K(

ω̂2
uK
/
∑T

t=1(t̃)
2
)1/2 ,

where ω̂2
uK

is a long-run variance estimator of uK,t and t̃ = t− T−1
∑T

r=1 r.

3. If T 0
ψK

is less than a critical value (e.g., −1.65 for 5% test when ω̂2
uK

is a HAC estimator),

then we conclude yit satisfies the weak σ−convergence and hence so does x∗it. (More

critical values are available in Kong, Phillips, and Sul (2019).)

Remark A (Trend Stationarity) When T is too small and n is large, the standard panel

unit root test would not perform properly. In such a case, we could see if the panel process

yit satisfies the weak σ−convergence toward some deterministic trend function, such as a

linear trend. If this weak σ−convergence is rejected, then it gives a supporting evidence
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that yit is not (linear) trend stationary in the long run. We can conduct this test using

Rn,t = n−1
∑n

i=1(yit− α̂0 − δ̂t)2, where (α̂0, δ̂) is from the trend regression: yt = α0 + δt+ et.

Then follow the steps 2 and 3 as above.

A.2 Long-Run Trend Determinant

When x∗it satisfies the weak σ−convergence from Section A.1, we can tell if a candidate time

series θt is a long-run trend determinant as follow. For simplicity, we employ the t-statistic

T 0
ϕ (b) given in (14).

1. Obtain Sn,t = n−1
∑n

i=1(yit − δ̂θt)
2, where δ̂ is from the time series regression: yt =

α0 + δθt + et.

2. Run a trend regression:

Sn,t = ϕ0 + ϕt+ ut

as given in (11) and obtain the t-statistic of ϕ as (using the Bartlett kernel)

T 0
ϕ (b) =

ϕ̂(
Ω̂u(b)/

∑T
t=1(t̃)

2
)1/2

where

Ω̂u(b) =
1

T

T∑
t=1

û2t +
2

T

L∑
ℓ=1

T−ℓ∑
t=1

(
1− ℓ

L+ 1

)
ûtût+ℓ

with L = [bT ] for some fixed-b coefficient b ∈ (0, 1), where ût = Sn,t − ϕ̂0 − ϕ̂t and [c]

is the largest integer smaller than or equal to c.

3. If T 0
ϕ (b) is less than a critical value (e.g., −1.96 for 5% test with b = 0.1), then we

conclude θt as a long-run (convergent) trend determinant of yit. More critical values

are available in Tables 7 and 8 at the end of the Appndix.

A.3 Convergent Subgroup

When x∗it does not satisfy the weak σ−convergence from Section A.1, we need to estimate

the convergent subgroup G(θ) for a given θt. If this subgroup estimate Ĝ(θ) is majority of
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the entire panel sample, then we check if θt is indeed a long-run trend determinant within

this estimated subgroup by implementing the steps in A.2 above only using the panel series

i ∈ Ĝ(θ). For simplicity, we here employ the simplified t-statistic, denoting T 0
φi
(b), similarly

as T 0
ϕ (b) given in (14).

1. Given θt, obtain ∆it = (yit− δ̂θt)2 for each i, where δ̂ is from the time series regression:

yt = α0 + δθt + et.

2. For each i, run a trend regression:

∆it = φ0i + φit+ uit

as given in (24) and obtain the t-statistic of φi as

T 0
φi
(b) =

φ̂i(
Ω̂u,i(b)/

∑T
t=1(t̃)

2
)1/2 ,

where the HAR long-run variance estimator Ω̂u,i(b) is obtained as Ω̂u(b) above by

replacing ût with ûit = ∆it − φ̂0i − φ̂it.

3. If T 0
φi
(b) is less than a threshold c1 < 0 (e.g., we chose c1 = −1.2 in the empirical

study), then we conclude this member i belongs to the subgroup estimate. Do this

step for all i to get the subgroup estimate Ĝ(1)(θ).

4. Update yt in step 1 as y
(1)
t = |Ĝ(1)(θ)|−1

∑
i∈Ĝ(1)(θ) yit and obtain δ̂(1) from y

(1)
t =

α
(1)
0 + δ(1)θt + e

(1)
t .

5. Update ∆
(1)
it = (yit − δ̂(1)θt)

2 for each i ∈ Ĝ(1)(θ) and repeat the steps 2 to 4 until the

subgroup membership is not further updated or |δ̂(r)−δ̂(r−1)| falls below some threshold

at the rth iteration. This resulting subgroup yields Ĝ(θ).

B Proof of Main Theorems

We assume the following conditions. ‘⇒’ denotes weak convergence of the associated prob-

ability measures and [c] is the largest integer smaller than or equal to c. The proofs of all
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the technical lemmas are provided in the online supplement.

Assumption 1

(i) (αi, µi)
′ is i.i.d. with mean zero and finite second moment, satisfying Eαiµi = 0. Let

σ2
µ = Eµ2

i .

(ii) (εit, ϵit)
′ is independent across i with mean zero and uniformly finite fourth moment,

satisfying Eεitϵit = 0. Let σ2
ε,i = Eε2it and σ2

ε = limn→∞ n−1
∑n

i=1 σ
2
ε,i <∞.

(iii) For each i, Jit =
(
εit, ϵit, , εitϵit, ε

2
it − σ2

ε,i

)′
satisfies a multivariate invariance principle:

T−1/2
∑[Tr]

t=1 Jit ⇒ B∗
i (r) as T → ∞ for r ∈ [0, 1], where B∗

i (·) is 4 × 1 vector Brownian

motion.

(iv) The elements of θt do not have cointegration among them.

(v) κ1, κ2 ∈ (0, 1/2).

(vi) n/T → ∞ as (n, T ) → ∞.

(vii) The kernel functionK : R 7→ [0, 1] satisfiesK(0) = 1, K(−ν) = K(ν),
∫
K (ν) dν = 1,

and
∫
K2 (ν) dν <∞.

Assumption 2 When ξt ∼ I(0), (ξt,∆θ
′
t)

′ is mean zero and σ2
ξ = Eξ2t < ∞. More-

over, J0,t =
(
ξt, ξ

2
t − σ2

ξ ,∆θ
′
t

)′
satisfies a multivariate invariance principle: T−1/2

∑[Tr]
t=1 J0,t ⇒

B∗
0(r) = (Bξ(r), Bξξ(r), B

′
θ(r))

′ as T → ∞ for r ∈ [0, 1], where B∗
0(·) is (2 +m) × 1 vector

Brownian motion with covariance matrix

Ω0 =
∞∑

j=−∞

E(J0,tJ ′
0,t+j) =


ω2
ξ ωξ,ξξ Ω′

θξ

ωξ,ξξ ω2
ξξ Ω′

θξξ

Ωθξ Ωθξξ Ωθ

 <∞,

that is uncorrelated with B∗
i (·) defined in Assumption 1.

Assumption 3 When ξt ∼ I(1), J1,t = (∆ξt,∆θ
′
t)

′ is mean zero and satisfies a multivariate

invariance principle: T−1/2
∑[Tr]

t=1 J1,t ⇒ B∗
1(r) = (Bξ(r), B

′
θ(r))

′ as T → ∞ for r ∈ [0, 1],
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where B∗
1(·) is (1 +m)× 1 vector Brownian motion with covariance matrix

Ω1 =
∞∑

j=−∞

E(J1,tJ ′
1,t+j) =

 ω2
ξ Ω′

θξ

Ωθξ Ωθ

 <∞,

that is uncorrelated with B∗
i (·) defined in Assumption 1.

For any process zt in discrete time t = 1, . . . , T , we denote the demeaned process as

z̃t = zt − T−1
∑T

s=1 zs. Similarly, for any process z (r) in continuous time r ∈ [0, 1], we

denote the demeaned process as z̃ (r) = z (r)−
∫ 1

0
z (s) ds.

Lemma B1 Let δ̂ be the least squares estimator of δ in (10). Under Assumptions 1-3, as

n, T → ∞, T (δ̂ − δ) ⇒
(∫ 1

0
B̃θ (r) B̃θ (r)

′ dr
)−1 ∫ 1

0
B̃θ (r) dBξ (r) if ξt ∼ I(0)

δ̂ − δ ⇒
(∫ 1

0
B̃θ (r) B̃θ (r)

′ dr
)−1 ∫ 1

0
B̃θ (r)Bξ (r) dr if ξt ∼ I(1).

Define the partial sum process

ZnT (r) =

[Tr]∑
t=1

t̃S̃n,t

for r ∈ [0, 1] and

V (r) =

{
W1 (r)−

∫ 1

0

W1 (s) W̃m (s)′ ds

(∫ 1

0

W̃m (s) W̃m (s)′ ds

)−1

Wm (r)

}2

, (B.1)

where W1 and Wm are standard vector Brownian motions such that Bξ(·) = ωξW1(·) and

Bθ(·) = Ω
1/2
θ Wm(·).

Lemma B2 Suppose ξt ∼ I(1) and Assumptions 1 and 3 hold. As n, T → ∞,

T−3ZnT (r) ⇒ ω2
ξ

∫ r

0

s̃Ṽ (s) ds
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for r ∈ [0, 1], where ω2
ξ =

∑∞
j=−∞ E(ξtξt+j).

Lemma B3 Suppose ξt ∼ I(0) and Assumptions 1 and 2 hold. Define B (r) as the Brow-

nian bridge and

q (κ; r) =

∫ r

0

(
s− 1

2

)(
s−2κ − 1

1− 2κ

)
ds

for 0 < κ < 1/2. Also let κ∗ = min{κ1, κ2}. As n, T → ∞, the following results hold.

(i) When κ∗ > 1/4,

T−3/2ZnT (r) ⇒ ωξξ

∫ r

0

s̃dB (s) ,

where ω2
ξξ =

∑∞
j=−∞ E

(
ξ2t − σ2

ξ

) (
ξ2t+j − σ2

ξ

)
and σ2

ξ = Eξ2t .

(ii) When κ∗ = 1/4,

T−3/2ZnT (r) ⇒ ωξξ

∫ r

0

s̃dB (s) +


q (1/4; r)σ2

µ if κ1 < κ2

q (1/4; r)σ2
ε if κ1 > κ2

q (1/4; r)
(
σ2
µ + σ2

ε

)
if κ1 = κ2.

(iii) When κ∗ < 1/4,

T−(2−2κ∗)ZnT (r)
p→


q (κ∗; r)σ

2
µ if κ1 < κ2

q (κ∗; r)σ
2
ε if κ1 > κ2

q (κ∗; r)
(
σ2
µ + σ2

ε

)
if κ1 = κ2.

Lemma B4 Let ϕ̂ be the least squares estimator of ϕ in (11) and Assumptions 1-3 hold.

As n, T → ∞, the followings hold.

(i) Suppose ξt ∼ I(1). Then,

ϕ̂⇒ 12ω2
ξ

∫ 1

0

s̃Ṽ (s) ds.

(ii) Suppose ξt ∼ I(0) and let κ∗ = min{κ1, κ2}. Then,
T 3/2ϕ̂⇒ 12ωξξ

∫ 1

0
s̃dB(s) ∼ N

(
0, 12ω2

ξξ

)
when κ∗ > 1/4

T 3/2ϕ̂⇒ 12ωξξ
∫ 1

0
s̃dB(s)− βϕ ∼ N

(
−βϕ, 12ω2

ξξ

)
when κ∗ = 1/4

T 1+2κ∗ϕ̂
p→ −β∗

ϕ when κ∗ < 1/4,
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where

βϕ =


4σ2

µ if κ1 < κ2

4σ2
ε if κ1 > κ2

4
(
σ2
µ + σ2

ε

)
if κ1 = κ2

and

β∗
ϕ =


6κ∗

(1−κ∗)(1−2κ∗)
σ2
µ if κ1 < κ2

6κ∗
(1−κ∗)(1−2κ∗)

σ2
ε if κ1 > κ2

6κ∗
(1−κ∗)(1−2κ∗)

(
σ2
µ + σ2

ε

)
if κ1 = κ2.

Define

ΨnT (b) =
T∑
t=1

T∑
s=1

K

(
t− s

Tb

)(
t̃ût
)
(s̃ûs) (B.2)

for some b ∈ (0, 1] and a kernel function K(·) given in Assumption 1, where ût = S̃n,t − ϕ̂t̃

is the regression residual in (11).

Lemma B5 Suppose ξt ∼ I(1) and Assumptions 1 and 3 hold. As n, T → ∞,

T−6ΨnT (b) ⇒ ω4
ξ

∫ 1

0

∫ 1

0

K

(
r − s

b

)
r̃s̃V τ (r)V τ (s) drds,

where

V τ (r) = Ṽ (r)− r̃

(∫ 1

0

(ν̃)2 dν

)−1 ∫ 1

0

ν̃Ṽ (ν) dν (B.3)

and Ṽ (r) is the demeaned V (r) in (B.1).

Lemma B6 Suppose ξt ∼ I(0) and Assumptions 1 and 2 hold. Let κ∗ = min{κ1, κ2}. As
n, T → ∞, the following results hold.

(i) When κ∗ > 1/4,

T−3ΨnT (b) ⇒ ω2
ξξ

∫ 1

0

∫ 1

0

K

(
t− s

b

)
r̃s̃dW τ (r) dW τ (s) ,

where W τ (r) is the second-level Brownian bridge.
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(ii) When κ∗ = 1/4,

T−3ΨnT (b) ⇒ ω2
ξξ

∫ 1

0

∫ 1

0

K

(
t− s

b

)
r̃s̃

{
dW τ (r) +

λ (r)

ωξξ
dr

}{
dW τ (s) +

λ (s)

ωξξ
ds

}
,

where

λ (r) =


(
4r + r−1/2 − 4

)
σ2
µ if κ1 < κ2(

4r + r−1/2 − 4
)
σ2
ε if κ1 > κ2(

4r + r−1/2 − 4
) (
σ2
µ + σ2

ε

)
if κ1 = κ2.

(iii) When κ∗ < 1/4,

T−(4−4κ∗)ΨnT (b)
p→
∫ 1

0

∫ 1

0

K

(
t− s

b

)
r̃s̃λ∗ (r)λ∗ (s) drds,

where

λ∗ (r) =


c (κ∗; r)σ

2
µ if κ1 < κ2

c (κ∗; r)σ
2
ε if κ1 > κ2

c (κ∗; r)
(
σ2
µ + σ2

ε

)
if κ1 = κ2

with

c (κ; r) = r−2κ +
6κr − (1 + 2κ)

(1− κ) (1− 2κ)
.

Proof of Theorem 1 Note that, for some fixed-b coefficient b ∈ (0, 1],

T Ω̂(b) =
T−1∑

ℓ=−(T−1)

K

(
ℓ

Tb

)
T Γ̂ℓ =

T∑
t=1

T∑
s=1

K

(
t− s

Tb

)
κtκs = ΨnT (b)

in (B.2), where κt = ûtt̃. Then, when ξt ∼ I(1), by Lemmas B4-(i) and B5,

Tϕ(b) =
ϕ̂{(

T−3
∑T

t=1(t̃)
2
)−1

T−6ΨnT (b)
(
T−3

∑T
t=1(t̃)

2
)−1
}1/2

⇒
12ω2

ξ

∫ 1

0
s̃Ṽ (s) ds{

(1/12)−1 ω4
ξ

∫ 1

0

∫ 1

0
K
(
r−s
b

)
r̃s̃V τ (r)V τ (s) drds (1/12)−1

}1/2
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=

∫ 1

0
s̃Ṽ (s) ds{∫ 1

0

∫ 1

0
K
(
r−s
b

)
r̃s̃V τ (r)V τ (s) drds

}1/2
, (B.4)

where V τ is defined in (B.3). When ξt ∼ I(0) and min {κ1, κ2} > 1/4, Lemmas B4-(ii) and

B6-(i) yield

Tϕ(b) =
T 3/2ϕ̂{(

T−3
∑T

t=1(t̃)
2
)−1

T−3ΨnT (b)
(
T−3

∑T
t=1(t̃)

2
)−1
}1/2

⇒
N
(
0, 12ω2

ξξ

){
(1/12)−1 ω2

ξξ

∫ 1

0

∫ 1

0
K
(
t−s
b

)
r̃s̃dW τ (r) dW τ (s) (1/12)−1

}1/2

=
N (0, 1){

12
∫ 1

0

∫ 1

0
K
(
t−s
b

)
r̃s̃dW τ (r) dW τ (s)

}1/2
,

where W τ (r) is the second-level Brownian bridge. □

Proof of Theorem 2 When ξt ∼ I(0) and min{κ1, κ2} = 1/4, by Lemmas B4-(ii) and

B6-(ii), we have

Tϕ(b) =
T 3/2ϕ̂{(

T−3
∑T

t=1(t̃)
2
)−1

T−3ΨnT (b)
(
T−3

∑T
t=1(t̃)

2
)−1
}1/2

⇒
N
(
0, 12ω2

ξξ

)
− βϕ{

(1/12)−1 ω2
ξξ

∫ 1

0

∫ 1

0
K
(
t−s
b

)
r̃s̃
{
dW τ (r) + λ(r)

ωξξ
dr
}{

dW τ (s) + λ(s)
ωξξ

ds
}
(1/12)−1

}1/2
,

which yields the desired result by multiplying (12ω2
ξξ)

−1/2 to both the numerator and the

denominator.

When κ∗ = min{κ1, κ2} < 1/4, Lemmas B4-(ii) and B6-(iii) yield

Tϕ(b) =
T 1+2κ∗ϕ̂{(

T−3
∑T

t=1(t̃)
2
)−1

T−(4−4κ∗)ΨnT (b)
(
T−3

∑T
t=1(t̃)

2
)−1
}1/2
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Table 7: One-Sided Asymptotic Critical Values (Bartlett kernel): Heteroskedastic Case

b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1% -3.037 -3.758 -4.350 -4.861 -5.391 -5.838 -6.280 -6.641 -6.891 -7.220
2.5% -2.488 -3.045 -3.500 -3.895 -4.286 -4.622 -4.942 -5.227 -5.423 -5.682
5% -2.040 -2.467 -2.826 -3.135 -3.429 -3.679 -3.918 -4.131 -4.289 -4.493
10% -1.554 -1.861 -2.117 -2.340 -2.543 -2.710 -2.866 -3.013 -3.133 -3.284
20% -0.999 -1.181 -1.336 -1.472 -1.591 -1.683 -1.767 -1.847 -1.923 -2.016

Note: The values are the simulated percentiles of the limiting distribution F0(b) in (19) of Tϕ(b)
with the Bartlett kernel, which allows for heteroskedasticity.

Table 8: One-Sided Asymptotic Critical Values (Bartlett kernel): Homoskedastic Case

b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1% -2.914 -3.598 -4.268 -4.988 -5.540 -6.087 -6.596 -7.046 -7.579 -8.020
2.5% -2.385 -2.890 -3.407 -3.974 -4.428 -4.872 -5.301 -5.685 -6.111 -6.467
5% -1.961 -2.340 -2.735 -3.181 -3.556 -3.921 -4.279 -4.608 -4.950 -5.238
10% -1.501 -1.759 -2.035 -2.354 -2.639 -2.924 -3.206 -3.463 -3.721 -3.935
20% -0.968 -1.117 -1.278 -1.469 -1.650 -1.836 -2.021 -2.193 -2.356 -2.491

Note: The values are the simulated percentiles of the limiting distribution F 0
0 (b) in (20) of T 0

ϕ (b)
with the Bartlett kernel, under the homoskedasticity restriction.

p→
−β∗

ϕ{
(1/12)−1 ∫ 1

0

∫ 1

0
K
(
t−s
b

)
r̃s̃λ∗ (r)λ∗ (s) drds (1/12)−1

}1/2

and the desired result follows by multiplying (1− κ∗) (1− 2κ∗) /12 to both the numerator

and the denominator, where either σ2
µ or σ2

ε are all canceled out. □

C Asymptotic Critical Values

Tables 7 and 8 provide one-sided asymptotic critical values for b ∈ (0, 1], which adds to Table

1. The values are the simulated percentiles of the limiting distribution of Tϕ(b) and T 0
ϕ (b)

given in (19) and (20), respectively, from 2 million replications. The Brownian motion is

approximated by normalized sums of standard normal random variables using 10,000 steps

and the Bartlett kernel is used for HAR estimation.
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